Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study of prostate cancer identifies a second risk locus at 8q24


Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (P = 9.42 × 10−13; heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13–1.41; homozygote OR: 1.58, 95% c.i.: 1.40–1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 P = 1.41 × 10−11; rs6983267 P = 6.62 × 10−10). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Association analysis of SNPs across a region of 8q24.
Figure 2: Association signal in the 8q24 region detected by ancestral recombination graph (ARG).
Figure 3: Centromeric and telomeric haplotypes of the 8q24 region associated with prostate cancer susceptibility in PLCO.


  1. Crawford, E.D. Epidemiology of prostate cancer. Urology 62, 3–12 (2003).

    Article  Google Scholar 

  2. Parkin, D.M. et al. Cancer Incidence in Five Continents (IARC Scientific Publications, Lyon, 2002).

    Google Scholar 

  3. Steinberg, G.D., Carter, B.S., Beaty, T.H., Childs, B. & Walsh, P.C. Family history and the risk of prostate cancer. Prostate 17, 337–347 (1990).

    CAS  Article  Google Scholar 

  4. Freedman, M.L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl. Acad. Sci. USA 103, 14068–14073 (2006).

    CAS  Article  Google Scholar 

  5. Amundadottir, L.T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    CAS  Article  Google Scholar 

  6. Schumacher, F.R. et al. Prostate cancer risk and 8q24. Cancer Res. (in the press).

  7. Gohagan, J.K., Prorok, P.C., Hayes, R.B. & Kramer, B.S. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. Control. Clin. Trials 21, 251S–272S (2000).

    CAS  Article  Google Scholar 

  8. Prorok, P.C. et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control. Clin. Trials 21, 273S–309S (2000).

    CAS  Article  Google Scholar 

  9. Phillips, M.S. et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat. Genet. 33, 382–387 (2003).

    CAS  Article  Google Scholar 

  10. Calle, E.E. et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94, 2490–2501 (2002).

    Article  Google Scholar 

  11. Chen, Y.C. et al. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 65, 11771–11778 (2005).

    CAS  Article  Google Scholar 

  12. Valeri, A. et al. Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence. Ann. Hum. Genet. 67, 125–137 (2003).

    CAS  Article  Google Scholar 

  13. The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics and compliance. Ann. Epidemiol. 4, 1–10 (1994).

  14. Fearnhead, P. SequenceLDhot: detecting recombination hotspots. Bioinformatics 22, 3061–3066 (2006).

    CAS  Article  Google Scholar 

  15. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    CAS  Article  Google Scholar 

  16. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  17. Minichiello, M.J. & Durbin, R. Mapping trait loci by use of inferred ancestral recombination graphs. Am. J. Hum. Genet. 79, 910–922 (2006).

    CAS  Article  Google Scholar 

  18. Stephens, M., Smith, N.J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    CAS  Article  Google Scholar 

  19. Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

    CAS  Article  Google Scholar 

  20. Nupponen, N.N., Kakkola, L., Koivisto, P. & Visakorpi, T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am. J. Pathol. 153, 141–148 (1998).

    CAS  Article  Google Scholar 

  21. Cher, M.L. et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 56, 3091–3102 (1996).

    CAS  PubMed  Google Scholar 

  22. Bruzzi, P., Green, S.B., Byar, D.P., Brinton, L.A. & Schairer, C. Estimating the population attributable risk for multiple risk factors using case-control data. Am. J. Epidemiol. 122, 904–914 (1985).

    CAS  Article  Google Scholar 

  23. Wacholder, S., Benichou, J., Heineman, E.F., Hartge, P. & Hoover, R.N. Attributable risk: advantages of a broad definition of exposure. Am. J. Epidemiol. 140, 303–309 (1994).

    CAS  Article  Google Scholar 

  24. Seldin, M.F. et al. European population substructure: clustering of northern and southern populations. PLoS Genet. 2, e143 (2006).

    Article  Google Scholar 

  25. Saarela, J. et al. PRKCA and multiple sclerosis: association in two independent populations. PLoS Genet. 2, e42 (2006).

    Article  Google Scholar 

  26. Willer, C.J. et al. Tag SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet. Epidemiol. 30, 180–190 (2006).

    Article  Google Scholar 

Download references


The HPFS study is supported by NIH grants CA CA55075 and 5U01CA098233-04. The ACS study is supported by U01 CA098710. The ATBC study is supported by NIH contracts N01-CN-45165, N01-RC-45035 and N01-RC-37004. F.R.S. is supported by an NRSA training grant (T32 CA 09001). P.F. is supported by a UK Engineering and Physical Sciences Research Council Grant (GR/S18786). M.M. is supported by the Wellcome Trust. N.O., R.B.H., S.W., K.Y., N.C., M.T., J.F.F., R.H., S.J.C. and G.T. are supported by the Intramural Research Program of the National Cancer Institute (US National Institutes of Health, Department of Health and Human Services).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen J Chanock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Distribution of genotype counts and frequencies in cases and controls. (PDF 13 kb)

Supplementary Table 2

Results for single SNPs for all models tested. (PDF 15 kb)

Supplementary Table 3

Results for two-SNP model for all models tested and age and case status for single-SNP and two-SNP models. (PDF 96 kb)

Supplementary Table 4

Population-attributable risks. (PDF 10 kb)

Supplementary Methods (PDF 169 kb)

Supplementary Note (PDF 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeager, M., Orr, N., Hayes, R. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39, 645–649 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing