Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion

Abstract

Inactivation of TGF-β family signaling is implicated in colorectal tumor progression. Using cis-Apc+/Δ716 Smad4+/− mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-β family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34+ iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34+ iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-β family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD34+ cells are clustered at the tumor invasion front in cis-Apc/Smad4 mice.
Figure 2: CD34+ cap cells are bone marrow–derived immature myeloid cells.
Figure 3: Expression of CCL9 is increased in the tumor epithelium in cis-Apc/Smad4 mice.
Figure 4: CD34+ iMCs express the cognate CCL9 receptor CCR1 and migrate toward the ligand.
Figure 5: Lack of CCR1 inhibits accumulation of CD34+ iMCs and suppresses tumor invasion.
Figure 6: CD34+ iMCs show gelatinolytic activities by secretion of MMP9 and MMP2.
Figure 7: Infiltrating leukocytes express MMP9 and CCR1 in human colon cancer.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  2. Moustakas, A. & Heldin, C.-H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  Google Scholar 

  3. Salovaara, R. et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 51, 56–59 (2002).

    Article  CAS  Google Scholar 

  4. Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550 (1995).

    CAS  PubMed  Google Scholar 

  5. Mori, Y. et al. Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res. 61, 6046–6049 (2001).

    CAS  PubMed  Google Scholar 

  6. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    Article  CAS  Google Scholar 

  7. Oshima, H., Oshima, M., Kobayashi, M., Tsutsumi, M. & Taketo, M.M. Morphological and molecular processes of polyp formation in ApcΔ716 knockout mice. Cancer Res. 57, 1644–1649 (1997).

    CAS  PubMed  Google Scholar 

  8. Mueller, M.M. & Fusenig, N.E. Friends or foes–bipolar effects of the tumor stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  9. Coussens, L.M., Tinkle, C.L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  Google Scholar 

  10. Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  11. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  Google Scholar 

  12. Lin, E.Y., Nguyen, A.V., Russel, R.G. & Pollard, J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–739 (2001).

    Article  CAS  Google Scholar 

  13. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  14. Bhowmick, N.A., Neilson, E.G. & Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  Google Scholar 

  15. Pollard, J.W. Tumor-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  Google Scholar 

  16. Seno, H. et al. Cyclooxygenase 2- and prostaglandin E2 receptor EP2-dependent angiogenesis in ApcΔ716 mouse intestinal polyps. Cancer Res. 62, 506–511 (2002).

    CAS  PubMed  Google Scholar 

  17. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  18. Krause, D.S., Fackler, M.J., Civin, C.I. & May, W.S. CD34: structure, biology, and clinical utility. Blood 87, 1–13 (1996).

    CAS  PubMed  Google Scholar 

  19. Zhao, X. et al. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells. J. Immunol. 171, 2797–2830 (2003).

    Article  CAS  Google Scholar 

  20. Yang, M. & Odgren, P.R. Molecular cloning and characterization of rat CCL9 (MIP-1γ), the ortholog of mouse CCL9. Cytokine 31, 94–102 (2005).

    Article  CAS  Google Scholar 

  21. Chen, C.-R., Kang, Y., Siegel, P.M. & Massagué, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32 (2002).

    Article  CAS  Google Scholar 

  22. Matsuo, S.E., Leoni, S.G., Colquhoun, A. & Kimura, E.T. Transforming growth factor-β1 and activin A generate antiproliferative signaling in thyroid cancer cells. J. Endocrinol. 190, 141–150 (2006).

    Article  CAS  Google Scholar 

  23. Gao, J.-L. et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J. Exp. Med. 185, 1959–1968 (1997).

    Article  CAS  Google Scholar 

  24. Greaves, D.R. & Schall, T.J. Chemokines and myeloid cell recruitment. Microbes Infect. 2, 331–336 (2000).

    Article  CAS  Google Scholar 

  25. Robinson, S.C. et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63, 8360–8365 (2003).

    CAS  PubMed  Google Scholar 

  26. Janowska-Wieczorek, A. et al. Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34+ cells and their transmigration through reconstituted basement membrane. Blood 93, 3379–3390 (1999).

    CAS  PubMed  Google Scholar 

  27. Mook, O.R.F., Frederiks, W.M. & Van Noorden, C.J.F. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta 1705, 69–89 (2004).

    CAS  PubMed  Google Scholar 

  28. Markowitz, S. TGF-β receptors and DNA repair genes, coupled targets in a pathway of human colon carcinogenesis. Biochim. Biophys. Acta 1470, M13–M20 (2000).

    CAS  PubMed  Google Scholar 

  29. Direkze, N.C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    Article  CAS  Google Scholar 

  30. Garmy-Susini, B. & Varner, J.A. Circulating endothelial progenitor cells. Br. J. Cancer 93, 855–858 (2005).

    Article  CAS  Google Scholar 

  31. Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  Google Scholar 

  32. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  Google Scholar 

  33. Lewis, C.E. & Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006).

    Article  CAS  Google Scholar 

  34. Kusmartsev, S. & Gabrilovich, D.I. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol. Immunother. 55, 237–245 (2006).

    Article  Google Scholar 

  35. Han, I.-S. et al. Differentiation of CD34+ cells from human cord blood and murine bone marrow is suppressed by C6 β-chemokines. Mol. Cells 15, 176–180 (2003).

    CAS  PubMed  Google Scholar 

  36. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  37. Forssmann, U. et al. CKβ8, a novel CC chemokine that predominantly acts on monocytes. FEBS Lett. 408, 211–216 (1997).

    Article  CAS  Google Scholar 

  38. Paglinawan, R. et al. TGFβ directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia 44, 219–231 (2003).

    Article  Google Scholar 

  39. Scotton, C., Milliken, D., Wilson, J., Raju, S. & Balkwill, F. Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours. Br. J. Cancer 85, 891–897 (2001).

    Article  CAS  Google Scholar 

  40. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  Google Scholar 

  41. Collins, H.M., Morris, T.M. & Watson, S.A. Spectrum of matrix metalloproteinase expression in primary and metastatic colon cancer: relationship to the tissue inhibitors of metalloproteinases and membrane type-1-matrix metalloproteinase. Br. J. Cancer 84, 1664–1670 (2001).

    Article  CAS  Google Scholar 

  42. Zavadil, J. & Böttinger, E.P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  Google Scholar 

  43. Grady, W.M. et al. Mutation of the type II transforming growth factor-β receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 58, 3101–3104 (1998).

    CAS  PubMed  Google Scholar 

  44. Ishiguro, K., Yoshida, T., Yagishita, H., Numata, Y. & Okayasu, T. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 55, 695–702 (2006).

    Article  CAS  Google Scholar 

  45. Bhowmick, N.A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  Google Scholar 

  46. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92, 4482–4486 (1995).

    Article  CAS  Google Scholar 

  47. Oshima, H., Oshima, M., Inaba, K. & Taketo, M.M. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J. 23, 1669–1678 (2004).

    Article  CAS  Google Scholar 

  48. Brubaker, P.L. & Vranic, M. Fetal rat intestinal cells in monolayer culture: a new in vitro system to study the glucagon-like immunoreactive peptides. Endocrinology 120, 1976–1985 (1987).

    Article  CAS  Google Scholar 

  49. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  50. Mook, O.R.F., van Overbeek, C., Ackema, E.G., van Maldegem, F. & Fredericks, W.M. In situ localization of gelatinolytic activity in the extracellular matrix of metastasis of colon cancer in rat liver using quenched fluorogenic DQ-gelatin. J. Histochem. Cytochem. 51, 821–829 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hirai for sectioning the clinical samples. We also thank M. Okabe (Osaka University) for EGFP transgenic mice and P.M. Murphy (National Institute of Allergy and Infectious Diseases, US National Institutes of Health) for CCR1 knockout mice. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports and Technology of Japan (to M.M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto M Taketo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Construction of cis-Apc/Smad4. (PDF 120 kb)

Supplementary Fig. 2

CD34+ CD31 cells. (PDF 273 kb)

Supplementary Fig. 3

Expression of CCL9. (PDF 46 kb)

Supplementary Fig. 4

Extent of immune cell infiltration. (PDF 483 kb)

Supplementary Fig. 5

Extent of CD34+ cell accumulation. (PDF 461 kb)

Supplementary Fig. 6

CD34+ cells also express MMP2. (PDF 221 kb)

Supplementary Table 1

Array data for chemokine mRNAs. (PDF 42 kb)

Supplementary Table 2

List of primer sequences. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, T., Kometani, K., Hashida, H. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39, 467–475 (2007). https://doi.org/10.1038/ng1997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing