Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis

Abstract

Toll-like receptors (TLRs) and members of their signaling pathway are important in the initiation of the innate immune response to a wide variety of pathogens1,2,3. The adaptor protein Mal (also known as TIRAP), encoded by TIRAP (MIM 606252), mediates downstream signaling of TLR2 and TLR4 (refs. 46). We report a case-control study of 6,106 individuals from the UK, Vietnam and several African countries with invasive pneumococcal disease, bacteremia, malaria and tuberculosis. We genotyped 33 SNPs, including rs8177374, which encodes a leucine substitution at Ser180 of Mal. We found that heterozygous carriage of this variant associated independently with all four infectious diseases in the different study populations. Combining the study groups, we found substantial support for a protective effect of S180L heterozygosity against these infectious diseases (N = 6,106; overall P = 9.6 × 10−8). We found that the Mal S180L variant attenuated TLR2 signal transduction.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Functional analysis of Mal Ser180 and Mal Leu180.
Figure 2: Molecular models of wild-type and mutant Mal.
Figure 3: HEK293 cells (1 × 106) were transfected with 3 μg of Flag-tagged TLR2, hemagglutinin (HA)-Mal or AU1-tagged MyD88.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Horng, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Poltorak, A. et al. Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  9. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krishnegowda, G. et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signalling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280, 8606–8616 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Dunne, A., Ejdeback, M., Ludidi, P.L., O'Neill, L.A. & Gay, N.J. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors TIRAP and MyD88. J. Biol. Chem. 278, 41443–41451 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291, 1544–1547 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Malley, R. et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100, 1966–1971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aitman, T.J. et al. Malaria susceptibility and CD36 mutation. Nature 405, 1015–1016 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, L.H., Baruch, D.I., Marsh, K. & Doumbo, O.K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Annane, D., Bellissant, E. & Cavaillon, J.M. Septic shock. Lancet 365, 63–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Cundell, D.R., Gerard, N.P., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E.I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Dean, M., Carrington, M. & O'Brien, S.J. Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genomics Hum. Genet. 3, 263–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Mead, S. et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Clatworthy, M.R. & Smith, K.G. FcgammaRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J. Exp. Med. 199, 717–723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jurinke, C., van den Boom, D., Cantor, C.R. & Koster, H. The use of MassARRAY technology for high throughput genotyping. Adv. Biochem. Eng. Biotechnol. 77, 57–74 (2002).

    CAS  PubMed  Google Scholar 

  26. Altshuler, D. et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Clayton, D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am. J. Hum. Genet. 65, 1170 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants and the many investigators involved in the original case-control studies in Algeria, the Gambia, Guinea-Bissau, Republic of Guinea, Kenya, Vietnam and the UK for their contributions. This paper was published with the permission of the director of the Kenya Medical Research Institute (KEMRI). We thank K. Fitzgerald (University of Massachusetts) for the gift of the Mal-deficient fibroblasts. This work was funded by the Wellcome Trust, Science Foundation Ireland, Irish Health Research Board and the Agency for Science, Technology and Research (A-STAR), Singapore. C.C.K. and R.T.G. are scholars of A-STAR, and are members of the Bachelor of Medicine and Surgery (MBBS)-PhD program, Faculty of Medicine, National University of Singapore. F.O.V. is supported by the EU FP6 GenoSept grant and the UK ORS Scheme. S.J.C. is a Wellcome Trust Clinical Research Fellow; A.V.S.H. is a Wellcome Trust Principal Fellow.

Author information

Authors and Affiliations

Authors

Contributions

C.C.K., S.J.C. and F.O.V. performed genotyping and wrote the article. A.D. and C.M. carried out functional experiments on Mal. O.K. and A.K. performed the modeling analysis on Mal. E.Y.L., A.J.F., A.J.W., C.A., S.S., C.E.M., K.K., S.J.C. and R.T.G. contributed to the experimental design of the genetic studies. C.L., A.S., P.A., O.Y.S., J.S., G.S., N.P., T.N.W., K.M., R.J.O.D., D.P.K., N.P.D., D.Y., D.W.C., K.M. and J.A.B. contributed to the design and collection of the case-control studies. All authors critically reviewed the manuscript. L.A.J.O'N. & A.V.S.H. led the functional and genetic efforts, respectively, and contributed equally to this work.

Corresponding authors

Correspondence to Luke A J O'Neill or Adrian V S Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Genomic organization and linkage disequilibrium of TIRAP and surrounding region. (PDF 693 kb)

Supplementary Table 1

Allele frequency and P value for each polymorphism in TIRAP and the surrounding region genotyped in the UK IPD and Gambian malaria case-control studies. (PDF 31 kb)

Supplementary Table 2

Genotype frequencies for each polymorphism in TIRAP and the surrounding region genotyped in the UK IPD and Gambian malaria case-control studies. (PDF 87 kb)

Supplementary Table 3

Primer sequences. (PDF 43 kb)

Supplementary Methods (PDF 87 kb)

Supplementary Note (PDF 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khor, C., Chapman, S., Vannberg, F. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39, 523–528 (2007). https://doi.org/10.1038/ng1976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing