Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation


In mammalian males, the first meiotic prophase is characterized by formation of a separate chromatin domain called the sex body1. In this domain, the X and Y chromosomes are partially synapsed and transcriptionally silenced, a process termed meiotic sex-chromosome inactivation (MSCI)2,3. Likewise, unsynapsed autosomal chromatin present during pachytene is also silenced (meiotic silencing of unsynapsed chromatin, MSUC)2,4,5. Although it is known that MSCI and MSUC are both dependent on histone H2A.X phosphorylation mediated by the kinase ATR, and cause repressive H3 Lys9 dimethylation4, the mechanisms underlying silencing are largely unidentified. Here, we demonstrate an extensive replacement of nucleosomes within unsynapsed chromatin, depending on and initiated shortly after induction of MSCI and MSUC. Nucleosomal eviction results in the exclusive incorporation of the H3.3 variant, which to date has primarily been associated with transcriptional activity. Nucleosomal exchange causes loss and subsequent selective reacquisition of specific histone modifications. This process therefore provides a means for epigenetic reprogramming of sex chromatin presumably required for gene silencing in the male mammalian germ line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gradual removal of H3.1 and H3.2 in the XY body in spermatocytes during meiotic prophase I.
Figure 2: Timing of onset and duration of H3.1 and H3.2 removal.
Figure 3: Progressive incorporation of H3.3 at sex chromosomes and autosomes during mouse meiotic prophase.
Figure 4: Dynamics in histone lysine-methylation patterns in relation to nucleosomal exchange at the XY body (a–d).
Figure 5: Localization of H3.1 and H3.2 in asynapsed autosomal chromatin of the T(1;13)70H and T(1;13)Wa translocation–containing spermatocytes (a–g) and Sycp1−/− spermatocytes (h).

Similar content being viewed by others


  1. Handel, M.A. The XY body: a specialized meiotic chromatin domain. Exp. Cell Res. 296, 57–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Turner, J.M. et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37, 41–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kierszenbaum, A.L. & Tres, L.L. Nucleolar and perichromosomal RNA synthesis during meiotic prophase in the mouse testis. J. Cell Biol. 60, 39–53 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turner, J.M., Mahadevaiah, S.K., Ellis, P.J., Mitchell, M.J. & Burgoyne, P.S. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10, 521–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Baarends, W.M. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 25, 1041–1053 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nightingale, K.P., O'neill, L.P. & Turner, B.M. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin. Genet. Dev. 16, 125–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Kamakaka, R.T. & Biggins, S. Histone variants: deviants? Genes Dev. 19, 295–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 21, 133–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. van der Heijden, G.W. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122, 1008–1022 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Loppin, B. et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Khalil, A.M., Boyar, F.Z. & Driscoll, D.J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc. Natl. Acad. Sci. USA 101, 16583–16587 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Namekawa, S.H. et al. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol. 16, 660–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Greaves, I.K., Rangasamy, D., Devoy, M., Marshall Graves, J.A. & Tremethick, D.J. The X and Y chromosomes assemble into H2A.Z, containing facultative heterochromatin, following meiosis. Mol. Cell. Biol. 26, 5394–5405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kramers, K. et al. Specificity of monoclonal anti-nucleosome auto-antibodies derived from lupus mice. J. Autoimmun. 9, 723–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Dietrich, A.J.J. & de Boer, P. A sequential analysis of the development of the synaptonemal complex in spermatocytes of the mouse by electron microscopy using hydroxyurea and agar filtration. Genetica 61, 119–129 (1983).

    Article  Google Scholar 

  16. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hake, S.B. et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl. Acad. Sci. USA 102, 6344–6349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahadevaiah, S.K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 27, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Moens, P.B. Histones H1 and H4 of surface-spread meiotic chromosomes. Chromosoma 104, 169–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Oakberg, E.F. Duration of spermatogenesis in the mouse and timing of stages of the cycle in the seminiferous epithelium. Am. J. Anat. 99, 507–516 (1956).

    Article  CAS  PubMed  Google Scholar 

  21. de Boer, P., Searle, A.G., van der Hoeven, F.A., de Rooij, D.G. & Beechey, C.V. Male pachytene pairing in single and double translocation heterozygotes and spermatogenic impairment in the mouse. Chromosoma 93, 326–336 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Speed, R.M. Abnormal RNA synthesis in sex vesicles of tertiary trisomic male mice. Chromosoma 93, 267–270 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Turner, J.M. et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14, 2135–2142 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Baart, E.B., de Rooij, D.G., Keegan, K.S. & de Boer, P. Distribution of Atr protein in primary spermatocytes of a mouse chromosomal mutant: a comparison of preparation techniques. Chromosoma 109, 139–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. de Vries, F.A. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Attikum, H. & Gasser, S.M. The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol. Cell Biol. 6, 757–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Peters, A.H., Plug, A.W., van Vugt, M.J. & de Boer, P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 5, 66–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Ashley, T., Gaeth, A.P., Creemers, L.B., Hack, A.M. & de Rooij, D.G. Correlation of meiotic events in testis sections and microspreads of mouse spermatocytes relative to the mid-pachytene checkpoint. Chromosoma 113, 126–136 (2004).

    Article  PubMed  Google Scholar 

  30. Kourmouli, N. et al. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci. 117, 2491–2501 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank T. Jenuwein, A. Schulmeister, F. van Leeuwen, C. Heyting, P.B. Moens, P.D. Adams and H.G. Stunnenberg for providing antibody reagents; J.-F. Spetz, A. Kelly and M. Puschendorf for their help in the generation and initial characterization of H3.1-HA and H3.3-V5 transgenic mice; C. Heyting, A. Pastink and E. de Boer for male meiotic preparations of Sycp1−/− knockout mice; and W.M. Baarends, C. Logie and P.J. Wang for critical reading of the manuscript. Research in the laboratory of A.H.F.M.P. is supported by the Novartis Research Foundation and the NoE network “The Epigenome” (LSHG-CT-2004-503433).

Author information

Authors and Affiliations



G.W.v.d.H., A.A.H.A.D., E.P., A.H.F.M.P. and P.d.B. conceived and designed the experiments. G.W.v.d.H., A.A.H.A.D., E.P. and M.G. performed the experiments. G.W.v.d.H., A.A.H.A.D., E.P., A.H.F.M.P. and P.d.B. analyzed the data. P.P. generated histone-tagged transgenic mice. L.R. was responsible for human material. J.v.d.V. contributed H3.1- and H3.2-specific antibodies. G.W.v.d.H., A.A.H.A.D., D.G.W., J.v.d.V., A.H.F.M.P. and P.d.B. contributed to the writing of the manuscript. J.V.d.V. and A.H.F.M.P. contributed equally to this work.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Temporary reduction of nucleosome density in the XY body. (PDF 828 kb)

Supplementary Fig. 2

Generation and characterization of H3.3-V5 and H3.1-HA transgenic lines. (PDF 157 kb)

Supplementary Fig. 3

Patterns of H3K4, H3K9, H3K27 and H4K20 methylation during prophase I. (PDF 2158 kb)

Supplementary Fig. 4

Schematic overview of timing of events. (PDF 390 kb)

Supplementary Table 1

Presence of HirA in XY chromatin during prophase I. (PDF 23 kb)

Supplementary Table 2

Duration of H3.1/H3.2 loss and positioning in prophase I. (PDF 30 kb)

Supplementary Table 3

Frequencies of H3.3-V5 incorporation into sex chromosomes during subsequent stages of meiotic prophase and in round spermatids. (PDF 34 kb)

Supplementary Table 4

Histone H3.1/H3.2 in T70H/T1Wa and Sycp−/− spermatocytes. (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Heijden, G., Derijck, A., Pósfai, E. et al. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39, 251–258 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing