Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease


The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid β peptide (Aβ) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Aβ-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative cell biological role and genetic architecture of SORL1.
Figure 2: SORL1 specifically interacts with APP holoprotein but not with its proteolytic derivatives.
Figure 3: SORL1 modulates APP trafficking into the endocytic β- and γ-secretase proteolytic pathways.

Similar content being viewed by others


  1. Mattson, M.P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a novel gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Saunders, A.M. et al. Association of apoliprotein E allele e4 with the late-onset familial and sporadic Alzheimer disease. Neurology 43, 1467–1472 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. & Younkin, S.G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Haass, C. & Selkoe, D.J. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75, 1039–1042 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Bayer, T.A. et al. Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol. 11, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita, A. et al. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J. Cell Sci. 116, 3339–3346 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Vetrivel, K.S. et al. Spatial segregation of gamma -secretase and substrates in distinct membrane domains. J. Biol. Chem. 280, 25892–25900 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Scherzer, C.R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205 (2004).

    Article  PubMed  Google Scholar 

  13. Small, S.A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Andersen, O.M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 102, 13461–13466 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Offe, K. et al. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 26, 1596–1603 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pritchard, J.K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69, 124–137 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pritchard, J.K. & Cox, N.J. The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet. 11, 2417–2423 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Athan, E.S. et al. A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. J. Am. Med. Assoc. 286, 2257–2263 (2001).

    Article  CAS  Google Scholar 

  19. Bowirrat, A., Treves, T.A., Friedland, R.P. & Korczyn, A.D. Prevalence of Alzheimer's type dementia in an elderly Arab population. Eur. J. Neurol. 8, 119–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rogaeva, E.A. et al. An alpha-2-macroglobulin insertion-deletion polymorphism in Alzheimer's disease. Nat. Genet. 22, 19–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Rogaeva, E. et al. Evidence for an Alzheimer disease susceptibility locus on chr 12, and for further locus heterogeneity. JAMA 280, 614–618 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.H. et al. Fine mapping of 10q and 18q for familial Alzheimer's disease in Caribbean Hispanics. Mol. Psychiatry 9, 1042–1051 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graff-Radford, N.R. et al. Association between apolipoprotein E genotype and Alzheimer disease in African American subjects. Arch. Neurol. 59, 594–600 (2002).

    Article  PubMed  Google Scholar 

  24. Green, R.C. et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA 287, 329–336 (2002).

    Article  PubMed  Google Scholar 

  25. Farrer, L.A. et al. Identification of multiple loci for Alzheimer disease in a consanguineous Israeli-Arab community. Hum. Mol. Genet. 12, 415–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, S., Chakravarti, A. & Cutler, D.J. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat. Genet. 36, 1181–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Ertekin-Taner, N. et al. Elevated amyloid beta protein (Abeta42) and late onset Alzheimer's disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene. Hum. Mol. Genet. 14, 447–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ertekin-Taner, N. et al. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum. Mutat. 23, 334–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Dodson, S.E. et al. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 866–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Seaman, M.N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. He, X., Li, F., Chang, W.P. & Tang, J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J. Biol. Chem. 280, 11696–11703 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Farrer, L.A. et al. Effects of age, sex, and ethnicity on the asscoiation between apolipoprotein E genotype and Alzheimer's Disease. A meta-analysis. APOE and Alzheimer's Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Rabinowitz, D. & Laird, N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 50, 211–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Vermeire, S. & Rutgeerts, P. Current status of genetics research in inflammatory bowel disease. Genes Immun. 6, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Owen, M.J., Craddock, N. & O'Donovan, M.C. Schizophrenia: genes at last? Trends Genet. 21, 518–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Horvath, S. et al. Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet. Epidemiol. 26, 61–69 (2004).

    Article  PubMed  Google Scholar 

  37. Lange, C., DeMeo, D., Silverman, E.K., Weiss, S.T. & Laird, N.M. PBAT: tools for family-based association studies. Am. J. Hum. Genet. 74, 367–369 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lange, C., Silverman, E.K., Xu, X., Weiss, S.T. & Laird, N.M. A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics 4, 195–206 (2003).

    Article  PubMed  Google Scholar 

  39. Lange, C. & Laird, N.M. Power calculations for a general class of family-based association tests: dichotomous traits. Am. J. Hum. Genet. 71, 575–584 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Steen, K. et al. Genomic screening and replication using the same data set in family-based association testing. Nat. Genet. 37, 683–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  42. Jannot, A.S., Essioux, L., Reese, M.G. & Clerget-Darpoux, F. Improved use of SNP information to detect the role of genes. Genet. Epidemiol. 25, 158–167 (2003).

    Article  PubMed  Google Scholar 

  43. Terwilliger, J.D. & Weiss, K.M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Schaid, D.J., Rowland, C.M., Tines, D.E., Jacobson, R.M. & Poland, G.A. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70, 425–434 (2002).

    Article  PubMed  Google Scholar 

  45. Chen, F. et al. Nicastrin binds to membrane-tethered Notch. Nat. Cell Biol. 3, 751–754 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Benjannet, S. et al. Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. J. Biol. Chem. 276, 10879–10887 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, G. et al. A novel protein (nicastrin) modulates presenilin-mediated Notch/Glp1 and betaAPP processing. Nature 407, 48–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Gu, Y. et al. The presenilin proteins are components of multiple membrane-bound complexes which have different biological activities. J. Biol. Chem. 279, 31329–31336 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hasegawa, H. et al. Both the sequence and length of the C terminus of PEN-2 are critical for intermolecular interactions and function of presenilin complexes. J. Biol. Chem. 279, 46455–46463 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references


The authors thank J. Ott for advice on the statistical analysis. The authors acknowledge the work of B. Tycko, M. Medarano, R. Lantigua, Y. Stern, A. Akomolafe, J. Browndyke, H. Chui, R. Go, A. Kurz, H. Petrovitch, N. Relkin, D. Sadovnick, P. Erlich, S. Sunyaev, L. Ma, J. Lok and S. Younkin. This work was supported by the Canadian Institutes of Health Research, the Howard Hughes Medical Institute, the Canadian Institutes of Health Research–Japan Science and Technology Trust, the Alzheimer Society of Ontario, the Canada Foundation for Innovation, the Ontario Research and Development Challenge Fund, the Ontario Mental Health Foundation, Genome Canada, the US National Institutes of Health and the National Institute on Aging (grants R37-AG15473 and P01-AG07232 (R.M.), R01-AG09029 (L.A.F.), RO1-HG/AG02213 (R.C.G.), P30-AG13846 (L.A.F., R.C.G.), R01-AG017173 (R.P.F., L.A.F.), P50-AG16574 (R.C.P., S.Y., N.G.R.) and U01-AG06786 (R.C.P.)), the Alzheimer Association, the Alzheimer Society of Canada, the Blanchett Hooker Rockefeller Foundation, the Charles S. Robertson Gift (R.M.), Fonds de la Recherche en Santé (Y.M.), Assessorato Regionale alla Sanità-Regione Calabria, Finalized Project of the Ministry of Health (2003–2005) (A.C.B.), Fondation pour la Recherche Médical, Robert and Clarice Smith and Abigail Van Buren, the Alzheimer Disease Research Program (R.P., S.Y.) and the W. Garfield Weston Fellowship (E.R., G.S.U.).

Author information

Authors and Affiliations



The authors' roles are described in Supplementary Table 11 online.

Corresponding authors

Correspondence to Richard Mayeux, Lindsay A Farrer or Peter St George-Hyslop.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Characteristics of genotyped subjects. (PDF 17 kb)

Supplementary Table 2

Single SNP results for VPS10 genes other than SORL1. (PDF 27 kb)

Supplementary Table 3

Characteristics of SNPs in SORL1. (PDF 579 kb)

Supplementary Table 4

Single SNP results for all 29 SORL1 SNPs in the six primary datasets. (PDF 355 kb)

Supplementary Table 5

Three-SNP haplotypes for all SORL1 SNPs. (PDF 245 kb)

Supplementary Table 6

Two-SNP haplotypes for all SORL1 SNPs. (PDF 232 kb)

Supplementary Table 7

Four-SNP haplotypes for all SORL1 SNPs. (PDF 284 kb)

Supplementary Table 8

Five-SNP haplotypes for all SORL1 SNPs. (PDF 261 kb)

Supplementary Table 9

Six-SNP haplotypes for all SORL1 SNPs. (PDF 372 kb)

Supplementary Table 10

Rare sequence variants in SORL1. (PDF 65 kb)

Supplementary Table 11

Authors' roles in the study. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogaeva, E., Meng, Y., Lee, J. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39, 168–177 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing