Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional copy number–independent deregulation of transcription in cancer

A Corrigendum to this article was published on 01 March 2008

This article has been updated


Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region; this is known as long-range epigenetic silencing. Various techniques are available for identifying regional genetic alterations, but no large-scale analysis has yet been carried out to obtain an overview of regional epigenetic alterations. We carried out an exhaustive search for regions susceptible to such mechanisms using a combination of transcriptome correlation map analysis and array CGH data for a series of bladder carcinomas. We validated one candidate region experimentally, demonstrating histone methylation leading to the loss of expression of neighboring genes without DNA methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptome correlation map of chromosome 8 for the 57 bladder carcinomas.
Figure 2: Comparison of CGH array data and transcriptome correlation maps: identification of regions of correlation due to DNA copy number changes.
Figure 3: Scatter plots of Affymetrix signal versus CGH log2 ratio for the EIF3S9, SHOC2 and ASH2L genes.
Figure 4: Comparison of CGH array data and transcriptome correlation maps: identification of regions of correlation not due to DNA copy number changes.
Figure 5: Delimitation of the 3-2 region by transcriptome and genome analyses.
Figure 6: Experimental validation of the 3-2 region.

Similar content being viewed by others

Accession codes



Change history

  • 27 February 2008

    In the version of this article initially published, the horizontal dashed lines representing the threshold value in the panels in row b of Figures 2 and 4 were incorrectly placed. The errors have been corrected in the HTML and PDF versions of this article.


  1. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosom. Cancer 20, 399–407 (1997).

    Article  CAS  Google Scholar 

  2. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  Google Scholar 

  3. Hughes, T.R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat. Genet. 25, 333–337 (2000).

    Article  CAS  Google Scholar 

  4. Hyman, E. et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 62, 6240–6245 (2002).

    CAS  PubMed  Google Scholar 

  5. Pollack, J.R. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99, 12963–12968 (2002).

    Article  CAS  Google Scholar 

  6. Masayesva, B.G. et al. Gene expression alterations over large chromosomal regions in cancers include multiple genes unrelated to malignant progression. Proc. Natl. Acad. Sci. USA 101, 8715–8720 (2004).

    Article  CAS  Google Scholar 

  7. Heidenblad, M. et al. Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 24, 1794–1801 (2005).

    Article  CAS  Google Scholar 

  8. Crawley, J.J. & Furge, K.A. Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data. Genome Biol. 3, RESEARCH0075 (2002).

    Article  Google Scholar 

  9. Zhou, Y. et al. Genome-wide identification of chromosomal regions of increased tumor expression by transcriptome analysis. Cancer Res. 63, 5781–5784 (2003).

    CAS  PubMed  Google Scholar 

  10. Kano, M. et al. Expression imbalance map: a new visualization method for detection of mRNA expression imbalance regions. Physiol. Genomics 13, 31–46 (2003).

    Article  CAS  Google Scholar 

  11. Midorikawa, Y. et al. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma. Cancer Res. 64, 7263–7270 (2004).

    Article  CAS  Google Scholar 

  12. Furge, K.A., Dykema, K.J., Ho, C. & Chen, X. Comparison of array-based comparative genomic hybridization with gene expression-based regional expression biases to identify genetic abnormalities in hepatocellular carcinoma. BMC Genomics 6, 67 (2005).

    Article  Google Scholar 

  13. Yang, X.J. et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 65, 5628–5637 (2005).

    Article  CAS  Google Scholar 

  14. Fujii, T. et al. A preliminary transcriptome map of non-small cell lung cancer. Cancer Res. 62, 3340–3346 (2002).

    CAS  PubMed  Google Scholar 

  15. Cohen, B.A., Mitra, R.D., Hughes, J.D. & Church, G.M. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat. Genet. 26, 183–186 (2000).

    Article  CAS  Google Scholar 

  16. Spellman, P.T. & Rubin, G.M. Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol. 1, 5 (2002).

    Article  Google Scholar 

  17. Reyal, F. et al. Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes–a study of 130 invasive ductal breast carcinomas. Cancer Res. 65, 1376–1383 (2005).

    Article  CAS  Google Scholar 

  18. Yi, Y., Mirosevich, J., Shyr, Y., Matusik, R. & George, A.L., Jr . Coupled analysis of gene expression and chromosomal location. Genomics 85, 401–412 (2005).

    Article  CAS  Google Scholar 

  19. Frigola, J. et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet. 38, 540–549 (2006).

    Article  CAS  Google Scholar 

  20. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  Google Scholar 

  21. Nguyen, C.T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine. Cancer Res. 62, 6456–6461 (2002).

    CAS  PubMed  Google Scholar 

  22. Daigo, Y. et al. Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res. 59, 1966–1972 (1999).

    CAS  PubMed  Google Scholar 

  23. Nakamura, Y. et al. Phospholipase Cdelta1 is required for skin stem cell lineage commitment. EMBO J. 22, 2981–2991 (2003).

    Article  CAS  Google Scholar 

  24. Chambeyron, S. & Bickmore, W.A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    Article  CAS  Google Scholar 

  25. Huebert, D.J. & Bernstein, B.E. Genomic views of chromatin. Curr. Opin. Genet. Dev. 15, 476–481 (2005).

    Article  CAS  Google Scholar 

  26. Gialitakis, M. et al. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by trichostatin A. Nucleic Acids Res. 34, 765–772 (2006).

    Article  CAS  Google Scholar 

  27. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  Google Scholar 

  28. van Driel, R., Fransz, P.F. & Verschure, P.J. The eukaryotic genome: a system regulated at different hierarchical levels. J. Cell Sci. 116, 4067–4075 (2003).

    Article  CAS  Google Scholar 

  29. Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32, 453–458 (2002).

    Article  CAS  Google Scholar 

  30. Hurst, L.D., Pal, C. & Lercher, M.J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).

    Article  CAS  Google Scholar 

  31. Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).

    Article  CAS  Google Scholar 

  32. Chang, H.Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  Google Scholar 

  33. Diez de Medina, S.G. et al. Decreased expression of keratinocyte growth factor receptor in a subset of human transitional cell bladder carcinomas. Oncogene 14, 323–330 (1997).

    Article  CAS  Google Scholar 

  34. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  35. Coombs, L.M. et al. Simultaneous isolation of DNA, RNA, and antigenic protein exhibiting kinase activity from small tumor samples using guanidine isothiocyanate. Anal. Biochem. 188, 338–343 (1990).

    Article  CAS  Google Scholar 

  36. Labarca, C. & Paigen, K. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102, 344–352 (1980).

    Article  CAS  Google Scholar 

  37. Snijders, A.M. et al. Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in fallopian tube carcinoma. Oncogene 22, 4281–4286 (2003).

    Article  CAS  Google Scholar 

  38. Jain, A.N. et al. Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002).

    Article  CAS  Google Scholar 

  39. Neuvial, P. et al. Spatial normalization of array-CGH data. BMC Bioinformatics 7, 264 (2006).

    Article  Google Scholar 

  40. Hupé, P., Stransky, N., Thiery, J.P., Radvanyi, F. & Barillot, E. Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413–3422 (2004).

    Article  Google Scholar 

  41. Southgate, J., Hutton, K.A., Thomas, D.F. & Trejdosiewicz, L.K. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab. Invest. 71, 583–594 (1994).

    CAS  PubMed  Google Scholar 

  42. Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    Article  CAS  Google Scholar 

  43. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003).

    Article  CAS  Google Scholar 

  44. Kent, W.J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  Google Scholar 

  45. R development core team R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2006).

Download references


We thank C. Rouveirol for discussions, P. Hupé for his GLAD algorithm expertise and the Institut Curie Bioinformatics Service headed by E. Barillot for support. We also thank J. Sappa from Alex Edelman & Associates for careful reading of the manuscript and the UCSF Cancer Center Array CGH Core for providing the BAC arrays. This article is dedicated to the memory of D. Chopin, whose commitment to cancer research was of paramount importance for the initiation of this work. This work was supported by the CNRS, the Institut Curie, AstraZeneca, the Canceropole Ile de France and the Ligue Nationale Contre le Cancer. N.S., C.V., F. Reyal, I.B.-P., S.G.D. de M. and F. Radvanyi are members of the Equipe Oncologie Moléculaire, labellisée par La Ligue Nationale Contre le Cancer. N.S. was supported by a fellowship from the French Ministry of Education and Research and a fellowship from the Association pour la Recherche sur le Cancer. C.V. was supported by a fellowship from the French Ministry of Education and Research and F. Reyal by a fellowship from the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations


Corresponding author

Correspondence to François Radvanyi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Transcriptome correlation maps of all chromosomes for the 57 bladder carcinomas. (PDF 1711 kb)

Supplementary Fig. 2

Quantitative PCR analysis of the gene copy number of region 3-2. (PDF 33 kb)

Supplementary Table 1

Transcriptome correlation map of 57 bladder carcinomas for chromosomes 1 to X (PDF 130 kb)

Supplementary Table 2

Clinical data of the 57 bladder carcinomas. (PDF 42 kb)

Supplementary Table 3

Primers for quantitative PCR, COBRA and ChIP experiments. (PDF 45 kb)

Supplementary Note (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stransky, N., Vallot, C., Reyal, F. et al. Regional copy number–independent deregulation of transcription in cancer. Nat Genet 38, 1386–1396 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing