Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes

Abstract

SATB1 (special AT-rich sequence binding protein 1) organizes cell type–specific nuclear architecture by anchoring specialized DNA sequences and recruiting chromatin remodeling factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4 and Il13, located in the 200-kb T-helper 2 (TH2) cytokine locus on mouse chromosome 11. We show that on TH2 cell activation, SATB1 expression is rapidly induced to form a unique transcriptionally active chromatin structure at the cytokine locus. In this structure, chromatin is folded into numerous small loops, all anchored to SATB1 at their base. In addition, histone H3 is acetylated at Lys9 and Lys14, and the TH2-specific factors GATA3, STAT6 and c-Maf, the chromatin-remodeling enzyme Brg1 and RNA polymerase II are all bound across the 200-kb region. Before activation, the TH2 cytokine locus is already associated with GATA3 and STAT6, showing some looping, but these are insufficient to induce cytokine gene expression. Using RNA interference, we show that on cell activation, SATB1 is required not only for compacting chromatin into dense loops at the 200-kb cytokine locus but also for inducing Il4, Il5, Il13 and c-Maf expression. Thus, SATB1 is a necessary determinant for the hitherto unidentified higher-order, transcriptionally active chromatin structure that forms on TH2 cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upon D10.G4.1 (TH2) cell activation, SATB1 expression is induced, and cytokine expression levels increase.
Figure 2: ChIP analysis of the TH2 cytokine locus in D10.G4.1 (TH2) cells uncovers SATB1 binding sequences (SBSs).
Figure 3: Chromatin loop analyses from SBS-C1 and SBS-C9 show dense SATB1-bound chromatin looping upon D10.G4.1 activation.
Figure 4: Rad50 intronic SBSs contribute to chromatin loop organization of TH2 cytokine locus in D10.G4.1 cells.
Figure 5: TH2 cytokine gene promoters are juxtaposed on D10.G4.1 activation, but the Rad50 promoter is not involved.
Figure 6: Association of TH2-specific factors, RNA polymerase II, Brg1 and acetylated histone H3 with the cytokine region.
Figure 7: SATB1 is required for Il4, Il5 and Il13 expression, induction of c-Maf and dense looping of active chromatin upon TH2 cell activation.
Figure 8: Summary of activation-dependent looping events and a model of transcriptionally active chromatin.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  2. Wilson, C.B., Makar, K.W., Shnyreva, M. & Fitzpatrick, D.R. DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin. Immunol. 17, 105–119 (2005).

    Article  CAS  Google Scholar 

  3. Kosak, S.T. & Groudine, M. Form follows function: The genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384 (2004).

    Article  CAS  Google Scholar 

  4. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  5. Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    Article  CAS  Google Scholar 

  6. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de-Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  7. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).

    Article  CAS  Google Scholar 

  8. Palstra, R.J. et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  9. Drissen, R. et al. The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 18, 2485–2490 (2004).

    Article  CAS  Google Scholar 

  10. Vakoc, C.R. et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462 (2005).

    Article  CAS  Google Scholar 

  11. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  Google Scholar 

  12. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. USA 103, 10684–10689 (2006).

    Article  CAS  Google Scholar 

  13. Ling, J.Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    Article  CAS  Google Scholar 

  14. Liu, Z. & Garrard, W.T. Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol. Cell. Biol. 25, 3220–3231 (2005).

    Article  CAS  Google Scholar 

  15. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495 (2006).

    Article  Google Scholar 

  16. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  17. Spilianakis, C.G., Lalioti, M.D., Town, T., Lee, G.R. & Flavell, R.A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  Google Scholar 

  18. Dickinson, L.A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645 (1992).

    Article  CAS  Google Scholar 

  19. Alvarez, J.D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de Belle, I., Cai, S. & Kohwi-Shigematsu, T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol. 141, 335–348 (1998).

    Article  CAS  Google Scholar 

  21. Cai, S., Han, H.J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat. Genet. 34, 42–51 (2003).

    Article  CAS  Google Scholar 

  22. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

    Article  CAS  Google Scholar 

  23. Kohwi-Shigematsu, T. & Kohwi, Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry 29, 9551–9560 (1990).

    Article  CAS  Google Scholar 

  24. Wen, J. et al. SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105, 3330–3339 (2005).

    Article  CAS  Google Scholar 

  25. Britanova, O., Akopov, S., Lukyanov, S., Gruss, P. & Tarabykin, V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur. J. Neurosci. 21, 658–668 (2005).

    Article  Google Scholar 

  26. Dobreva, G. et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125, 971–986 (2006).

    Article  CAS  Google Scholar 

  27. Pavan Kumar, P. et al. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol. Cell 22, 231–243 (2006).

    Article  CAS  Google Scholar 

  28. Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17, 3048–3061 (2003).

    Article  CAS  Google Scholar 

  29. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  30. Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

    Article  CAS  Google Scholar 

  31. Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  32. Fields, P.E., Kim, S.T. & Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  Google Scholar 

  33. Avni, O. et al. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  34. Baguet, A. & Bix, M. Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc. Natl. Acad. Sci. USA 101, 11410–11415 (2004).

    Article  CAS  Google Scholar 

  35. Makar, K.W. et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat. Immunol. 4, 1183–1190 (2003).

    Article  CAS  Google Scholar 

  36. Fields, P.E., Lee, G.R., Kim, S.T., Bartsevich, V.V. & Flavell, R.A. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21, 865–876 (2004).

    Article  CAS  Google Scholar 

  37. Grosveld, F., van Assendelft, G.B., Greaves, D.R. & Kollias, G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  38. Lee, G.R., Fields, P.E., Griffin, T.J. & Flavell, R.A. Regulation of the Th2 cytokine locus by a locus control region. Immunity 19, 145–153 (2003).

    Article  CAS  Google Scholar 

  39. Lee, G.R., Spilianakis, C.G. & Flavell, R.A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat. Immunol. 6, 42–48 (2005).

    Article  CAS  Google Scholar 

  40. Kohwi-Shigematsu, T., deBelle, I., Dickinson, L.A., Galande, S. & Kohwi, Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol. 53, 323–354 (1998).

    Article  CAS  Google Scholar 

  41. Loots, G.G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  CAS  Google Scholar 

  42. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  43. Zhu, J., Guo, L., Watson, C.J., Hu-Li, J. & Paul, W.E. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J. Immunol. 166, 7276–7281 (2001).

    Article  CAS  Google Scholar 

  44. Kurata, H., Lee, H.J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  Google Scholar 

  45. Ho, I.C., Hodge, M.R., Rooney, J.W. & Glimcher, L.H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

    Article  CAS  Google Scholar 

  46. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  Google Scholar 

  47. Paddison, P.J. et al. Cloning of short hairpin RNAs for gene knockdown in mammalian cells. Nat. Methods 1, 163–167 (2004).

    Article  CAS  Google Scholar 

  48. Cook, P.R. Predicting three-dimensional genome structure from transcriptional activity. Nat. Genet. 32, 347–352 (2002).

    Article  CAS  Google Scholar 

  49. Hager, G.L. et al. Chromatin dynamics and the evolution of alternate promoter states. Chromosome Res. 14, 107–116 (2006).

    Article  CAS  Google Scholar 

  50. Kaye, J., Porcelli, S., Tite, J., Jones, B. & Janeway, C.A., Jr. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J. Exp. Med. 158, 836–856 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Arai and S. Miyatake for instructing us on culturing D10.G4.1 cells, M. Kohwi for critically reading the manuscript and M. Miyano for drawing the loop model. This work was supported by US National Institutes of Health grants to T.K.-S.

Author information

Authors and Affiliations

Authors

Contributions

All data shown in Figures 1, 2, 3, 4, 5, 6, 7 were produced by S.C., except for cloning of the nine SBSs, which was performed by C.C.L. This paper was written by T.K.-S. and S.C. This study was designed by T.K.-S.

Corresponding author

Correspondence to Terumi Kohwi-Shigematsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cloning of genomic sequences that bind to SATB1 in vitro. (PDF 196 kb)

Supplementary Fig. 2

ChIP loop assay and 3C assay to determine chromatin structure of the TH2 cytokine locus. (PDF 2640 kb)

Supplementary Fig. 3

Primer sequences and DNA fragment sizes. (PDF 2079 kb)

Supplementary Fig. 4

Immunolocalization of RNA polymerase II, c-Maf, STAT6, Brg1 and SATB1 in resting and activated D10.G4.1 cells. (PDF 766 kb)

Supplementary Fig. 5

FISH analysis for the 200-kb cytokine region. (PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, S., Lee, C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38, 1278–1288 (2006). https://doi.org/10.1038/ng1913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing