Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How genetic analysis tests theories of animal aging

Each animal species displays a specific life span, rate of aging and pattern of development of age-dependent diseases. The genetic bases of these related features are being studied experimentally in invertebrate and vertebrate model systems as well as in humans through medical records. Three types of mutants are being analyzed: (i) short-lived mutants that are prone to age-dependent diseases and might be models of accelerated aging; (ii) mutants that show overt molecular defects but that do not live shorter lives than controls, and can be used to test specific theories about the molecular causes of aging and age-dependent diseases; and (iii) long-lived mutants that might advance the understanding of the molecular physiology of slow-aging animals and aid the discovery of molecular targets that could be used to manipulate rates of aging to benefit human health. Here, I analyze some of what we know today and discuss what we should try to find out in the future to understand the aging phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of life span studies in C. elegans and mice.
Figure 2: Schematic illustration of two important questions that can have independent answers.
Figure 3: The relationship between life span and age-dependent diseases.

References

  1. Friedman, D.B. & Johnson, T.E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R.A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  3. Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lakowski, B. & Hekimi, S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010–1013 (1996).

    CAS  PubMed  Google Scholar 

  5. Lin, Y.J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).

    CAS  PubMed  Google Scholar 

  6. Rogina, B., Reenan, R.A., Nilsen, S.P. & Helfand, S.L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290, 2137–2140 (2000).

    CAS  PubMed  Google Scholar 

  7. Holzenberger, M. et al. IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    CAS  PubMed  Google Scholar 

  8. Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and life span in mice. Genes Dev. 19, 2424–2434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perls, T.T. et al. Life-long sustained mortality advantage of siblings of centenarians. Proc. Natl. Acad. Sci. USA 99, 8442–8447 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Terry, D.F. et al. Lower all-cause, cardiovascular, and cancer mortality in centenarians' offspring. J. Am. Geriatr. Soc. 52, 2074–2076 (2004).

    PubMed  Google Scholar 

  11. Perls, T. et al. Exceptional familial clustering for extreme longevity in humans. J. Am. Geriatr. Soc. 48, 1483–1485 (2000).

    CAS  PubMed  Google Scholar 

  12. Barger, J.L., Walford, R.L. & Weindruch, R. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp. Gerontol. 38, 1343–1351 (2003).

    PubMed  Google Scholar 

  13. Liang, H. et al. Genetic mouse models of extended life span. Exp. Gerontol. 38, 1353–1364 (2003).

    CAS  PubMed  Google Scholar 

  14. Smith, G.S., Walford, R.L. & Mickey, M.R. Life span and incidence of cancer and other diseases in selected long-lived inbred mice and their F 1 hybrids. J. Natl. Cancer Inst. 50, 1195–1213 (1973).

    CAS  PubMed  Google Scholar 

  15. Blackwell, B.N., Bucci, T.J., Hart, R.W. & Turturro, A. Longevity, body weight, and neoplasia in ad libitum-fed and diet-restricted C57BL6 mice fed NIH-31 open formula diet. Toxicol. Pathol. 23, 570–582 (1995).

    CAS  PubMed  Google Scholar 

  16. Cosgrove, G.E., Satterfield, L.C., Bowles, N.D. & Klima, W.C. Diseases of aging untreated virgin female RFM and BALB/c mice. J. Gerontol. 33, 178–183 (1978).

    CAS  PubMed  Google Scholar 

  17. Ferri, C.P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117 (2005).

    PubMed  PubMed Central  Google Scholar 

  18. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    PubMed  Google Scholar 

  19. Patil, C.K., Mian, I.S. & Campisi, J. The thorny path linking cellular senescence to organismal aging. Mech. Ageing Dev. 126, 1040–1045 (2005).

    PubMed  Google Scholar 

  20. Mortimer, R.K. & Johnston, J.R. Life span of individual yeast cells. Nature 183, 1751–1752 (1959).

    CAS  PubMed  Google Scholar 

  21. Kennedy, B.K. & Guarente, L. Genetic analysis of aging in Saccharomyces cerevisiae. Trends Genet. 12, 355–359 (1996).

    CAS  PubMed  Google Scholar 

  22. Kenney, W.L. & Munce, T.A. Invited review: aging and human temperature regulation. J. Appl. Physiol. 95, 2598–2603 (2003).

    PubMed  Google Scholar 

  23. Strigini, L. & Ryan, T. Wound healing in elderly human skin. Clin. Dermatol. 14, 197–206 (1996).

    CAS  PubMed  Google Scholar 

  24. Holliday, R. The close relationship between biological aging and age-associated pathologies in humans. J. Gerontol. A Biol. Sci. Med. Sci. 59, B543–B546 (2004).

    PubMed  Google Scholar 

  25. Hayflick, L. The not-so-close relationship between biological aging and age-associated pathologies in humans. J. Gerontol. A Biol. Sci. Med. Sci. 59, B547–B550 (2004).

    PubMed  Google Scholar 

  26. Masoro, E.J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  27. Martin, G.M. The Werner mutation: does it lead to a “public” or “private” mechanism of aging? Mol. Med. 3, 356–358 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hekimi, S., Burgess, J., Bussiere, F., Meng, Y. & Benard, C. Genetics of life span in C. elegans: molecular diversity, physiological complexity, mechanistic simplicity. Trends Genet. 17, 712–718 (2001).

    CAS  PubMed  Google Scholar 

  29. Martin, G.M. Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120, 523–532 (2005).

    CAS  PubMed  Google Scholar 

  30. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    CAS  PubMed  Google Scholar 

  31. Epstein, C.J., Martin, G.M. & Motulsky, A.G. Werner's syndrome; caricature of aging. A genetic model for the study of degenerative diseases. Trans. Assoc. Am. Physicians 78, 73–81 (1965).

    CAS  PubMed  Google Scholar 

  32. Epstein, C.J., Martin, G.M., Schultz, A.L. & Motulsky, A.G. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45, 177–221 (1966).

    CAS  Google Scholar 

  33. Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005).

    CAS  PubMed  Google Scholar 

  34. Rollo, C.D. Growth negatively impacts the life span of mammals. Evol. Dev. 4, 55–61 (2002).

    PubMed  Google Scholar 

  35. Miller, R.A., Harper, J.M., Galecki, A. & Burke, D.T. Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1, 22–29 (2002).

    CAS  PubMed  Google Scholar 

  36. Samaras, T.T., Elrick, H. & Storms, L.H. Is height related to longevity? Life Sci. 72, 1781–1802 (2003).

    CAS  PubMed  Google Scholar 

  37. Trifunovic, A. et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. USA 102, 17993–17998 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  39. Harding, A.E. Growing old: the most common mitochondrial disease of all? Nat. Genet. 2, 251–252 (1992).

    CAS  PubMed  Google Scholar 

  40. Wallace, D.C. A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found. Symp. 235, 247–263 (2001).

    CAS  PubMed  Google Scholar 

  41. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  43. Keaney, M., Matthijssens, F., Sharpe, M., Vanfleteren, J. & Gems, D. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 37, 239–250 (2004).

    CAS  PubMed  Google Scholar 

  44. Magwere, T. et al. The effects of exogenous antioxidants on life span and oxidative stress resistance in Drosophila melanogaster. Mech. Ageing Dev. 127, 356–370 (2006).

    CAS  PubMed  Google Scholar 

  45. Sohal, R.S. & Allen, R.G. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Gerontol. 25, 499–522 (1990).

    CAS  PubMed  Google Scholar 

  46. Sohal, R.S. Oxidative stress hypothesis of aging. Free Radic. Biol. Med. 33, 573–574 (2002).

    CAS  PubMed  Google Scholar 

  47. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 13091–13096 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rudolph, K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  49. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  50. Sharpless, N.E. & DePinho, R.A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376–381 (1995).

    CAS  PubMed  Google Scholar 

  52. Van Remmen, H. et al. Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radic. Biol. Med. 36, 1625–1634 (2004).

    CAS  PubMed  Google Scholar 

  53. Kirkwood, T.B. Evolution of ageing. Nature 270, 301–304 (1977).

    CAS  PubMed  Google Scholar 

  54. Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).

    CAS  PubMed  Google Scholar 

  55. Matheu, A. et al. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev. 18, 2736–2746 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, R.A. Genetic approaches to the study of aging. J. Am. Geriatr. Soc. 53, 284–286 (2005).

    Google Scholar 

  57. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schriner, S.E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    CAS  PubMed  Google Scholar 

  59. Chiu, C.H., Lin, W.D., Huang, S.Y. & Lee, Y.H. Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells. Genes Dev. 18, 1970–1975 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Carrière, A., Liu, X. & Hekimi, S. The age of heterozygosity. Age (Omaha) 28, 201–208 (2006).

    Google Scholar 

  61. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    CAS  PubMed  Google Scholar 

  62. Tatar, M., Bartke, A. & Antebi, A. The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351 (2003).

    CAS  PubMed  Google Scholar 

  63. Clancy, D.J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    CAS  PubMed  Google Scholar 

  64. Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    CAS  PubMed  Google Scholar 

  65. Felkai, S. et al. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 18, 1783–1792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Google Scholar 

  67. Lee, S.S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  68. Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  69. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Howitz, K.T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae life span. Nature 425, 191–196 (2003).

    CAS  PubMed  Google Scholar 

  71. Tissenbaum, H.A. & Guarente, L. Increased dosage of a sir-2 gene extends life span in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    CAS  PubMed  Google Scholar 

  72. Rogina, B. & Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998–16003 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31 (2006).

    PubMed  Google Scholar 

  74. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  75. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771–776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Herskind, A.M. et al. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).

    CAS  PubMed  Google Scholar 

  77. Perls, T. & Terry, D. Genetics of exceptional longevity. Exp. Gerontol. 38, 725–730 (2003).

    PubMed  Google Scholar 

  78. Atzmon, G. et al. Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol. 4, e113 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. Evert, J., Lawler, E., Bogan, H. & Perls, T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J. Gerontol. A Biol. Sci. Med. Sci. 58, 232–237 (2003).

    PubMed  Google Scholar 

  80. Andersen, S.L. et al. Cancer in the oldest old. Mech. Ageing Dev. 126, 263–267 (2005).

    PubMed  Google Scholar 

  81. Kohn, R.R. Cause of death in very old people. J. Am. Med. Assoc. 247, 2793–2797 (1982).

    CAS  Google Scholar 

  82. Branicky, R., Benard, C. & Hekimi, S. clk-1, mitochondria, and physiological rates. Bioessays 22, 48–56 (2000).

    CAS  PubMed  Google Scholar 

  83. Hodgkin, J. & Barnes, T.M. More is not better: brood size and population growth in a self-fertilizing nematode. Proc. Biol. Sci. 246, 19–24 (1991).

    CAS  PubMed  Google Scholar 

  84. Marden, J.H., Rogina, B., Montooth, K.L. & Helfand, S.L. Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc. Natl. Acad. Sci. USA 100, 3369–3373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Walker, D.W., McColl, G., Jenkins, N.L., Harris, J. & Lithgow, G.J. Evolution of life span in C. elegans. Nature 405, 296–297 (2000).

    CAS  PubMed  Google Scholar 

  86. Rubner, M. Das Problem der Lebensdaur und Seiner Beziehunger zum Wachstum und Ernarnhung (Oldenberg, Munich, 1908).

    Google Scholar 

  87. Lombard, D.B. et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20, 3286–3291 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Berman, J.R. & Kenyon, C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055–1068 (2006).

    CAS  PubMed  Google Scholar 

  89. Jia, K., Chen, D. & Riddle, D.L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906 (2004).

    CAS  PubMed  Google Scholar 

  90. Ludewig, A.H. et al. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev. 18, 2120–2133 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rottiers, V. et al. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev. Cell 10, 473–482 (2006).

    CAS  PubMed  Google Scholar 

  92. Narbonne, P. & Roy, R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133, 611–619 (2006).

    CAS  PubMed  Google Scholar 

  93. Hansen, M., Hsu, A.L., Dillin, A. & Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of life span from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1, 119–128 (2005).

    CAS  PubMed  Google Scholar 

  94. Boehm, M. & Slack, F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954–1957 (2005).

    CAS  PubMed  Google Scholar 

  95. Oh, S.W. et al. JNK regulates life span in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. USA 102, 4494–4499 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Murphy, C.T. et al. Genes that act downstream of DAF-16 to influence the life span of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    CAS  PubMed  Google Scholar 

  97. McElwee, J.J., Schuster, E., Blanc, E., Thomas, J.H. & Gems, D. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 279, 44533–44543 (2004).

    CAS  PubMed  Google Scholar 

  98. Lund, J. et al. Transcriptional profile of aging in C. elegans. Curr. Biol. 12, 1566–1573 (2002).

    CAS  PubMed  Google Scholar 

  99. Oh, S.W. et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat. Genet. 38, 251–257 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

For discussions and insightful work, I thank the past and present members of my laboratory and my colleagues in the field. My laboratory is funded by McGill University, the National Science and Research Council of Canada (NSERC) and a research contract from Chronogen, Inc. I hold the Strathcona Chair of Zoology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.H. is the founder of, a shareholder of, and a consultant for Chronogen, a biotechnology company interested in aging research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hekimi, S. How genetic analysis tests theories of animal aging. Nat Genet 38, 985–991 (2006). https://doi.org/10.1038/ng1881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing