Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation

Abstract

An increasing number of human disorders have been linked to mutations in genes of the secretory pathway. The chemically induced zebrafish crusher variant results in malformed craniofacial skeleton, kinked pectoral fins and a short body length. By positional cloning, we identified a nonsense mutation converting leucine to a stop codon (L402X) in the sec23a gene, an integral component of the COPII complex, which is critical for anterograde protein trafficking between endoplasmic reticulum and Golgi apparatus. Zebrafish crusher mutants develop normally until the onset of craniofacial chondrogenesis. crusher chondrocytes accumulate proteins in a distended endoplasmic reticulum, resulting in severe reduction of cartilage extracellular matrix (ECM) deposits, including type II collagen. We demonstrate that the paralogous gene sec23b is also an essential component of the ECM secretory pathway in chondrocytes. In contrast, knockdown of the COPI complex does not hinder craniofacial morphogenesis. As SEC23A lesions cause the cranio-lenticulo-sutural dysplasia syndrome, crusher provides the first vertebrate model system that links the biology of endoplasmic reticulum to Golgi trafficking with a clinically relevant dysmorphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crum299 lesion disrupts craniofacial development.
Figure 2: The crum299 mutation is localized in the sec23a gene locus.
Figure 3: Transmission electron microscopy shows sparse ECM deposits and abnormal chondrocyte maturation in crum299 embryos.
Figure 4: The Sec23a mutation disturbs glycosylation and col2a1 expression and triggers the ER stress response.
Figure 5: Knockdown of the sec23b gene produces a phenotype similar to crum299.
Figure 6: Knockdown of the copa gene does not affect chondrocyte maturation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Hicke, L. & Schekman, R. Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J. 8, 1677–1684 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mellman, I. & Warren, G. The road taken: past and future foundations of membrane traffic. Cell 100, 99–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Stagg, S.M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Mironov, A.A. et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5, 583–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Stephens, D.J. & Pepperkok, R. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J. Cell Sci. 115, 1149–1160 (2002).

    CAS  PubMed  Google Scholar 

  10. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Scales, S.J., Pepperkok, R. & Kreis, T.E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Neuhauss, S.C. et al. Mutations affecting craniofacial development in zebrafish. Development 123, 357–367 (1996).

    CAS  PubMed  Google Scholar 

  13. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat. Genet. 18, 338–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bi, X., Corpina, R.A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Bandoh, N. et al. Development and characterization of human constitutive proteasome and immunoproteasome subunit-specific monoclonal antibodies. Tissue Antigens 66, 185–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Gebe, J.A., Swanson, E. & Kwok, W.W. HLA class II peptide-binding and autoimmunity. Tissue Antigens 59, 78–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bell, D.M. et al. SOX9 directly regulates the type-II collagen gene. Nat. Genet. 16, 174–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, Y. & Hendershot, L.M. ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28, 51–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kaiser, C.A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Paccaud, J.P. et al. Cloning and functional characterization of mammalian homologues of the COPII component Sec23. Mol. Biol. Cell 7, 1535–1546 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coutinho, P. et al. Differential requirements for COPI transport during vertebrate early development. Dev. Cell 7, 547–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, B. et al. Mutations in Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 34, 29–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Boyadjiev, S.A. et al. A novel dysmorphic syndrome with open calvarial sutures and sutural cataracts maps to chromosome 14q13-q21. Hum. Genet. 113, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  25. Boyadjiev, S.A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal ER-to-Golgi trafficking. Nat. Genet. published online 17 September 2006 (doi:10.1038/ng1876).

  26. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Barrallo-Gimeno, A., Holzschuh, J., Driever, W. & Knapik, E.W. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 131, 1463–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Yan, Y.L., Hatta, K., Riggleman, B. & Postlethwait, J.H. Expression of a type II collagen gene in the zebrafish embryonic axis. Dev. Dyn. 203, 363–376 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Pearson, D.S., Kulyk, W.M., Kelly, G.M. & Krone, P.H. Cloning and characterization of a cDNA encoding the collagen-binding stress protein hsp47 in zebrafish. DNA Cell Biol. 15, 263–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Chiang, E.F. et al. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Knappmeyer and S. Goetter for excellent zebrafish animal care; B. Joch for electron microscopy; S. Ferrone for LMP7 and HLAII antibodies; W. Driever for sharing the crusher mutant and wild-type zebrafish lines and L. Beihoffer for performing supporting experiments. We are indebted to A. Hatzopoulos, T. Graham, A. George and M. Summers for critically reading the manuscript and S. Wente for discussions. This work has been supported in part by the zebrafish initiative of the Vanderbilt University Academic Venture Capital Fund (E.W.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.R.L. conducted all experiments except electron microscopy by M.F. and confocal imaging by L.A.L. The project was designed and orchestrated by E.W.K., who analyzed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ela W Knapik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Endochondral ossification is aborted in crum299 embryos. (PDF 474 kb)

Supplementary Fig. 2

The Sec23 primary structure has been highly conserved in evolution. (PDF 69 kb)

Supplementary Table 1

Oligonucleotides sequences. (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M., Lapierre, L., Frotscher, M. et al. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat Genet 38, 1198–1203 (2006). https://doi.org/10.1038/ng1880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing