Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

JAK signaling globally counteracts heterochromatic gene silencing

Abstract

The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1,2,3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic mutations influence hopTum-l hematopoietic tumorigenicity.
Figure 2: Su(var)205, Su(var)3-9 and Rpd3 mutations enhance hopTum-l tumorigenicity without affecting JAK/STAT signaling.
Figure 3: JAK gain of function suppresses and loss of function enhances heterochromatic gene silencing.
Figure 4: JAK gain of function decreases, and loss of function increases, HP1 and H3mK9 localization on heterochromatin.
Figure 5: HP1 counteracts tumorigenesis induced by JAK/STAT overactivation.

Similar content being viewed by others

References

  1. Bromberg, J.F. Activation of STAT proteins and growth control. Bioessays 23, 161–169 (2001).

    Article  CAS  Google Scholar 

  2. Levy, D.E. & Darnell, J.E., Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  3. Yu, H. & Jove, R. The STATs of cancer–new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  4. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  Google Scholar 

  5. Hou, X.S., Melnick, M.B. & Perrimon, N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84, 411–419 (1996).

    Article  CAS  Google Scholar 

  6. Yan, R., Small, S., Desplan, C., Dearolf, C.R. & Darnell, J.E., Jr. Identification of a Stat gene that functions in Drosophila development. Cell 84, 421–430 (1996).

    Article  CAS  Google Scholar 

  7. Hou, S.X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms. Emerging roles in cell movement. Dev. Cell 3, 765–778 (2002).

    Article  CAS  Google Scholar 

  8. Agaisse, H. & Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72–82 (2004).

    Article  CAS  Google Scholar 

  9. Li, J., Xia, F. & Li, W.X. Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Dev. Cell 5, 787–798 (2003).

    Article  CAS  Google Scholar 

  10. Hanratty, W.P. & Dearolf, C.R. The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol. Gen. Genet. 238, 33–37 (1993).

    CAS  PubMed  Google Scholar 

  11. Harrison, D.A., Binari, R., Nahreini, T.S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995).

    Article  CAS  Google Scholar 

  12. Luo, H., Hanratty, W.P. & Dearolf, C.R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14, 1412–1420 (1995).

    Article  CAS  Google Scholar 

  13. Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M.P. & Boutros, M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436, 871–875 (2005).

    Article  Google Scholar 

  14. Baeg, G.H., Zhou, R. & Perrimon, N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev. 19, 1861–1870 (2005).

    Article  CAS  Google Scholar 

  15. Bach, E.A., Vincent, S., Zeidler, M.P. & Perrimon, N. A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics 165, 1149–1166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feinberg, A.P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153 (2004).

    Article  CAS  Google Scholar 

  17. Lund, A.H. & van Lohuizen, M. Epigenetics and cancer. Genes Dev. 18, 2315–2335 (2004).

    Article  CAS  Google Scholar 

  18. Grewal, S.I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  Google Scholar 

  19. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl.), 245–254 (2003).

    Article  CAS  Google Scholar 

  20. Grewal, S.I. & Elgin, S.C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    Article  CAS  Google Scholar 

  21. Zinyk, D.L., McGonnigal, B.G. & Dearolf, C.R. Drosophila awdK-pn, a homologue of the metastasis suppressor gene nm23, suppresses the Tum-1 haematopoietic oncogene. Nat. Genet. 4, 195–201 (1993).

    Article  CAS  Google Scholar 

  22. Betz, A., Lampen, N., Martinek, S., Young, M.W. & Darnell, J.E., Jr. A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl. Acad. Sci. USA 98, 9563–9568 (2001).

    Article  CAS  Google Scholar 

  23. Badenhorst, P., Voas, M., Rebay, I. & Wu, C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16, 3186–3198 (2002).

    Article  CAS  Google Scholar 

  24. Lebestky, T., Jung, S.H. & Banerjee, U.A. Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348–353 (2003).

    Article  CAS  Google Scholar 

  25. Gilbert, M.M., Weaver, B.K., Gergen, J.P. & Reich, N.C. A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation. Mech. Dev. 122, 939–948 (2005).

    Article  CAS  Google Scholar 

  26. Dorer, D.R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  Google Scholar 

  27. Ronsseray, S., Boivin, A. & Anxolabehere, D. P-Element repression in Drosophila melanogaster by variegating clusters of P-lacZ-white transgenes. Genetics 159, 1631–1642 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y., Danzer, J.R., Alvarez, P., Belmont, A.S. & Wallrath, L.L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130, 1817–1824 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Larson and D. Guo for technical assistance; J. Birchler, S. Elgin, L. Wallrath, N. Reich, N. Perrimon, E. Bach and the Bloomington Drosophila Stock Center for various Drosophila strains and L. Silver-Morse for helpful comments on the manuscript. J.L. was a recipient of the Wilmot Cancer Research Fellowship. H.C.C. was a trainee of the Post-Baccalaureate Research Education Program (PREP) of the US National Institutes of Health. This study was supported by grants from the US National Institutes of Health (R01GM65774 and R01GM077046) and an American Cancer Society Research Scholar Grant (RSG-06-196-01-TBE) to W.X.L.

Author information

Authors and Affiliations

Authors

Contributions

The initial Df screen was performed by H.C.C., J.L. and L.L.; identification of modifier genes and phenotype assessment were performed by S.S.; F.X. contributed to the protein blot analysis. W.X.L. designed the study and wrote the paper.

Note: Supplementary information is available on the Nature Genetics website.

Corresponding author

Correspondence to Willis X Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Modifiers of hopTum-1 tumorigenicity. (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Calhoun, H., Xia, F. et al. JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 38, 1071–1076 (2006). https://doi.org/10.1038/ng1860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing