Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Multiple knockout analysis of genetic robustness in the yeast metabolic network


Genetic robustness characterizes the constancy of the phenotype in face of heritable perturbations. Previous investigations have used comprehensive single and double gene knockouts to study gene essentiality and pairwise gene interactions in the yeast Saccharomyces cerevisiae. Here we conduct an in silico multiple knockout investigation of a flux balance analysis model of the yeast's metabolic network. Cataloging gene sets that provide mutual functional backup, we identify sets of up to eight interacting genes and characterize the 'k robustness' (the depth of backup interactions) of each gene. We find that 74% (360) of the metabolic genes participate in processes that are essential to growth in a standard laboratory environment, compared with only 13% previously found to be essential using single knockouts. The genes' k robustness is shown to be a solid indicator of their biological buffering capacity and is correlated with both the genes' environmental specificity and their evolutionary retention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fraction of essential genes in each k robustness level.
Figure 2: k robustness gene histograms and the distribution of backup mechanisms for contributing genes at different levels of k robustness, on rich (ad) and minimal media (eh).
Figure 3: Metabolic network robustness across different functional GO-Slim categories on rich medium, showing for each category the proportions of essential genes (dark), backed up genes (light), and genes not found to contribute in our analysis (white).
Figure 4: Functional backup capacity on rich medium.
Figure 5: Environmental specificity (ES) and propensity for gene loss (PGL) as a function of robustness level.

Similar content being viewed by others


  1. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  2. De Visser, J.A. et al. Perspective: evolution and detection of genetic robustness. Evolution Int. J. Org. Evolution 57, 1959–1972 (2003).

    Google Scholar 

  3. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  CAS  Google Scholar 

  4. Papp, B., Pál, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Article  CAS  Google Scholar 

  5. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    Article  CAS  Google Scholar 

  6. Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    Article  CAS  Google Scholar 

  7. Hartman, J.L., IV, Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  Google Scholar 

  8. Wagner, A. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361 (2000).

    Article  CAS  Google Scholar 

  9. Nowak, M.A., Boerlijst, M.C., Cooke, J. & Maynard Smith, J. Evolution of genetic redundancy. Nature 388, 167–171 (1997).

    Article  CAS  Google Scholar 

  10. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  11. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  12. Segrè, D., DeLuna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83 (2004).

    Article  Google Scholar 

  13. Thiele, I., Vo, T.D., Price, N.D. & Palsson, B.Ø. An expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single and double deletion mutants. J. Bacteriol. 187, 5818–5830 (2005).

    Article  CAS  Google Scholar 

  14. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    Article  CAS  Google Scholar 

  15. Klamt, S. & Gilles, E.D. Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226–234 (2004).

    Article  CAS  Google Scholar 

  16. Schuster, S., Fell, D. & Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332 (2000).

    Article  CAS  Google Scholar 

  17. Förster, J., Famili, I., Palsson, B. Ø. & Nielsen, J. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7, 193–202 (2003).

    Article  Google Scholar 

  18. Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  Google Scholar 

  19. Famili, I., Förster, J., Nielsen, J. & Palsson, B.Ø. Saccharomyces cerevisiae phenotypes can be predicted using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139 (2003).

    Article  CAS  Google Scholar 

  20. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).

    Article  CAS  Google Scholar 

  21. Krylov, D.M., Wolf, Y.I., Rogozin, I.B. & Koonin, E.V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

    Article  CAS  Google Scholar 

  22. Wolf, Y.I., Carmel, L. & Koonin, E.V. Unifying measures of gene function and evolution. Proc. Biol. Sci. 273, 1507–1515 (2006).

    Article  CAS  Google Scholar 

  23. Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  Google Scholar 

  24. Papp, B., Pál, C. & Hurst, L.D. Genomic function (communication arising): rate of evolution and gene dispensability. Nature 421, 496–497 (2003).

    PubMed  Google Scholar 

  25. Nelson, D.L. & Cox, M.M. Lehninger Principles of Biochemistry 3rd edn. (Worth Publishers, New York, 2000).

    Google Scholar 

  26. Schaaff-Gerstenschläger, I., Mannhaupt, G., Vetter, I., Zimmermann, F.K. & Feldmann, H. TKL2, a second transketolase gene of Saccharomyces cerevisiae – cloning, sequence and deletion analysis of the gene. Eur. J. Biochem. 217, 487–492 (1993).

    Article  Google Scholar 

  27. Lord, P.W., Stevens, R., Brass, A. & Goble, C.A. Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283 (2003).

    Article  CAS  Google Scholar 

  28. Blank, L.M., Kuepfer, L. & Sauer, U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 6, R49 (2005).

    Article  Google Scholar 

  29. Meiklejohn, C.D. & Hartl, D.L. A single mode of canalization. Trends Ecol. Evol. 17, 468–473 (2002).

    Article  Google Scholar 

  30. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  31. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

  32. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005).

    Article  CAS  Google Scholar 

  33. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

Download references


We thank the Tauber fund for supporting D.D. Discussions with and comments of A. Hirsh, A. Kaufman, O. Meshi, Y. Pilpel, T. Pupko, R. Sharan, T. Shlomi and I. Venger are much appreciated. Figure 4 was drawn using Pajek from M.K.'s work was supported by grants from the Israeli Science Foundation (ISF) and the Israeli Ministry of Health. E.R.'s research is supported by the Yishayahu Horowitz Center for Complexity Science, the Israeli Science Foundation (ISF), and the German-Israeli Foundation for scientific research and development (GIF).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eytan Ruppin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Proline and arginine metabolism (partial diagram). (PDF 32 kb)

Supplementary Fig. 2

Distribution of the number of essential gene sets per gene. (PDF 9 kb)

Supplementary Fig. 3

Functional distance values of coessential genes. (PDF 15 kb)

Supplementary Fig. 4

Growth rates of tested mutants missing two to four genes. (PDF 22 kb)

Supplementary Table 1

Model genes and the essential sets found. (PDF 60 kb)

Supplementary Table 2

Correlation of k robustness and several biological indicators. (PDF 25 kb)

Supplementary Methods (PDF 45 kb)

Supplementary Note (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutscher, D., Meilijson, I., Kupiec, M. et al. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38, 993–998 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing