Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide genetic association of complex traits in heterogeneous stock mice

This article has been updated

Abstract

Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fine-mapping of three phenotypes on chromosome 14.
Figure 2: QTL apparent effect sizes and total additive genetic variance.
Figure 3: Test for the presence of a diallelic QTL on chromosome 12.
Figure 4: Large-effect QTLs that suggest a small number of candidates for molecular cloning.

Similar content being viewed by others

Change history

  • 04 August 2006

    In the supplementary information initially published online to accompany this article, Supplementary Table 1 contained numerous errors. The original file has been replaced with a corrected version of the table. The error has been corrected online.

References

  1. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–286 (2005).

    Article  CAS  Google Scholar 

  2. Singer, J.B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304, 445–448 (2004).

    Article  CAS  Google Scholar 

  3. Mott, R. & Flint, J. Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160, 1609–1618 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mott, R., Talbot, C.J., Turri, M.G., Collins, A.C. & Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654 (2000).

    Article  Google Scholar 

  5. Yalcin, B., Flint, J. & Mott, R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171, 673–681 (2005).

    Article  CAS  Google Scholar 

  6. Demarest, K., Koyner, J., McCaughran, J. Jr., Cipp, L. & Hitzemann, R. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav. Genet. 31, 79–91 (2001).

    Article  CAS  Google Scholar 

  7. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nat. Genet. 21, 305–308 (1999).

    Article  CAS  Google Scholar 

  8. Talbot, C.J. et al. Fine scale mapping of a genetic locus for conditioned fear. Mamm. Genome 14, 223–230 (2003).

    Article  Google Scholar 

  9. Balding, D.J. Discussion on the meeting on 'Statistical modelling and analysis of genetic data'. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 737–775 (2002).

    Article  Google Scholar 

  10. Sillanpaa, M.J. & Corander, J. Model choice in gene mapping: what and why. Trends Genet. 18, 301–307 (2002).

    Article  CAS  Google Scholar 

  11. Broman, K.W. & Speed, T.P. A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 641–656 (2002).

    Article  Google Scholar 

  12. Ball, R.D. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics 159, 1351–1364 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Solberg, L.C. et al. A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm. Genome 17, 129–146 (2006).

    Article  Google Scholar 

  14. Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).

    Google Scholar 

  15. Hackett, C.A., Meyer, R.C. & Thomas, W.T.B. Multi-trait QTL mapping in barley using multivariate regression. Genet. Res. 77, 95–106 (2001).

    Article  CAS  Google Scholar 

  16. Valdar, W. et al. Genetic and environmental effects on complex traits in mice. Genetics (in the press).

  17. Visscher, P.M. & Haley, C.S. Detection of putative quantitative trait loci in line crosses under infinitesimal genetic models. Theor. Appl. Genet. 93, 691–702 (1996).

    Article  CAS  Google Scholar 

  18. Yalcin, B. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat. Genet. 36, 1197–1202 (2004).

    Article  CAS  Google Scholar 

  19. Deutschbauer, A.M. & Davis, R.W. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat. Genet. 37, 1333–1340 (2005).

    Article  CAS  Google Scholar 

  20. Mackay, T.F. The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14, 253–257 (2004).

    Article  CAS  Google Scholar 

  21. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat. Genet. 18, 19–24 (1998).

    Article  CAS  Google Scholar 

  22. Dipetrillo, K., Wang, X., Stylianou, I.M. & Paigen, B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 21, 683–692 (2005).

    Article  CAS  Google Scholar 

  23. Doolittle, M.H., LeBoeuf, R.C., Warden, C.H., Bee, L.M. & Lusis, A.J. A polymorphism affecting lipoprotein A-II translational efficiency determines high density lipoprotein size and composition. J. Biol. Chem. 256, 16380–16388 (1990).

    Google Scholar 

  24. Warden, C.H., Hedrick, C.C., Qiao, J.H., Castellani, L.W. & Lusis, A.J. Atherosclerosis in transgenic mice overexpressing apoliprotein A-II. Science 261, 469–472 (1993).

    Article  CAS  Google Scholar 

  25. Wang, X., Korstanje, R., Higgins, D. & Paigen, B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res. 14, 1767–1772 (2004).

    Article  CAS  Google Scholar 

  26. Foreman, J.E. et al. Serum alkaline phosphatase activity is regulated by a chromosomal region containing the alkaline phosphatase 2 gene (Akp2) in C57BL/6J and DBA/2J mice. Physiol. Genomics 23, 295–303 (2005).

    Article  CAS  Google Scholar 

  27. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  Google Scholar 

  28. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  Google Scholar 

  29. R Development Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2004).

  30. Cervino, A.C. et al. Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 86, 505–517 (2005).

    Article  CAS  Google Scholar 

  31. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc. Natl. Acad. Sci. USA 100, 3380–3385 (2003).

    Article  CAS  Google Scholar 

  32. Petkov, P.M. et al. Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Genet. 1, e33 (2005).

    Article  Google Scholar 

  33. Valdar, W., Flint, J. & Mott, R. Simulating the collaborative cross: power of QTL detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172, 1783–1797 (2006).

    Article  CAS  Google Scholar 

  34. Visscher, P.M., Thompson, R. & Haley, C.S. Confidence intervals in QTL mapping by bootstrapping. Genetics 143, 1013–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Toye, A.A. et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48, 675–686 (2005).

    Article  CAS  Google Scholar 

  36. Caldarone, B. et al. Quantitative trait loci analysis affecting contextual conditioning in mice. Nat. Genet. 17, 335–337 (1997).

    Article  CAS  Google Scholar 

  37. Wehner, J.M. et al. Quantitative trait locus analysis of contextual fear conditioning in mice. Nat. Genet. 17, 331–334 (1997).

    Article  CAS  Google Scholar 

  38. Ackerman, K.G. et al. Interacting genetic loci cause airway hyperresponsiveness. Physiol. Genomics 21, 105–111 (2005).

    Article  CAS  Google Scholar 

  39. Henderson, N.D., Turri, M.G., DeFries, J.C. & Flint, J. QTL Analysis of multiple behavioral measures of anxiety in mice. Behav. Genet. 34, 267–293 (2004).

    Article  Google Scholar 

  40. Cohen, R.M., Kang, A. & Gulick, C. Quantitative trait loci affecting the behavior of A/J and CBA/J intercross mice in the elevated plus maze. Mamm. Genome 12, 501–507 (2001).

    Article  CAS  Google Scholar 

  41. Wang, X. & Paigen, B. Genetics of variation in HDL cholesterol in humans and mice. Circ. Res. 96, 27–42 (2005).

    Article  CAS  Google Scholar 

  42. Gershenfeld, H.K. et al. Mapping quantitative trait loci for open-field behavior in mice. Behav. Genet. 27, 201–210 (1997).

    Article  CAS  Google Scholar 

  43. Singer, J.B., Hill, A.E., Nadeau, J.H. & Lander, E.S. Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169, 855–862 (2005).

    Article  CAS  Google Scholar 

  44. Steinberger, D. et al. Genetic mapping of variation in spatial learning in the mouse. J. Neurosci. 23, 2426–2433 (2003).

    Article  CAS  Google Scholar 

  45. De Sanctis, G.T. et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat. Genet. 11, 150–154 (1995).

    Article  CAS  Google Scholar 

  46. Ewart, S.L. et al. Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am. J. Respir. Cell Mol. Biol. 23, 537–545 (2000).

    Article  CAS  Google Scholar 

  47. Morris, K.H., Ishikawa, A. & Keightley, P.D. Quantitative trait loci for growth traits in C57BL/6J x DBA/2J mice. Mamm. Genome 10, 225–228 (1999).

    Article  CAS  Google Scholar 

  48. Taylor, B.A. & Phillips, S.J. Obesity QTLs on mouse chromosomes 2 and 17. Genomics 43, 249–257 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Wellcome Trust and the European Union (contract LHSG-CT-2003-503265). D.G. holds a Wellcome senior fellowship in basic biomedical science (057733). We are grateful to R. Hitzemann for providing heterogeneous stock mice, to M. Daly and R. Williams for help with SNP selection and to S. McCormick and A. Morris for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The heterogeneous stock study was designed by J.F., R.M., W.O.C., L.C.S., D.G. and J.N.P.R. Phenotype and genotype assessments were performed by S.B., P.K., J.F. and L.C.S. W.V., M.S.T., J.F. and R.M. were responsible for the analysis. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Richard Mott or Jonathan Flint.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Distribution of the number of genes contained within 50% confidence intervals of 843 QTLs. (PDF 113 kb)

Supplementary Table 1

QTLs with bootstrap posterior probabilities (BPP) values > 0.25 (XLS 356 kb)

Supplementary Table 2

Sex-specific QTLs (found by a genome scan for sex by genotype interaction) that exceed logP 5. (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdar, W., Solberg, L., Gauguier, D. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38, 879–887 (2006). https://doi.org/10.1038/ng1840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing