Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification

Abstract

A cis-regulatory region of nearly 300 kb controls the expression of the three bithorax complex (BX-C) homeotic genes: Ubx, abd-A and Abd-B1,2. Interspersed between the numerous enhancers and silencers within the complex are elements called domain boundaries. Recently, many pieces of evidence have suggested that boundaries function to create autonomous domains by interacting among themselves and forming chromatin loops3,4,5,6. In order to test this hypothesis, we used Dam identification to probe for interactions between the Fab-7 boundary and other regions in the BX-C7. We were surprised to find that the targeting of Dam methyltransferase (Dam) to the Fab-7 boundary results in a strong methylation signal at the Abd-Bm promoter, 35 kb away. Moreover, this methylation pattern is found primarily in the tissues where Abd-B is not expressed and requires an intact Fab-7 boundary. Overall, our work provides the first documented example of a dynamic, long-distance physical interaction between distal regulatory elements within a living, multicellular organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Graph marking relative methylation levels above background (RMoB) in DGL (red) and DGLΔFab-7 (blue).
Figure 3: Graphs marking relative methylation levels above background (RMoB).

Similar content being viewed by others

References

  1. Lewis, E.B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  Google Scholar 

  2. Maeda, R.K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413–1422 (2006).

    Article  CAS  Google Scholar 

  3. Muravyova, E. et al. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291, 495–498 (2001).

    Article  CAS  Google Scholar 

  4. Cai, H.N. & Shen, P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291, 493–495 (2001).

    Article  CAS  Google Scholar 

  5. Gerasimova, T.I., Byrd, K. & Corces, V.G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000).

    Article  CAS  Google Scholar 

  6. Gruzdeva, N., Kyrchanova, O., Parshikov, A., Kullyev, A. & Georgiev, P. The Mcp element from the bithorax complex contains an insulator that is capable of pairwise interactions and can facilitate enhancer-promoter communication. Mol. Cell. Biol. 25, 3682–3689 (2005).

    Article  CAS  Google Scholar 

  7. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

    Article  CAS  Google Scholar 

  8. Galloni, M., Gyurkovics, H., Schedl, P. & Karch, F. The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J. 12, 1087–1097 (1993).

    Article  CAS  Google Scholar 

  9. McCall, K., O'Connor, M.B. & Bender, W. Enhancer traps in the Drosophila bithorax complex mark parasegmental domains. Genetics 138, 387–399 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bender, W. & Hudson, A. P element homing to the Drosophila bithorax complex. Development 127, 3981–3992 (2000).

    CAS  PubMed  Google Scholar 

  11. Mihaly, J. et al. Chromatin domain boundaries in the Bithorax complex. Cell. Mol. Life Sci. 54, 60–70 (1998).

    Article  CAS  Google Scholar 

  12. Gyurkovics, H., Gausz, J., Kummer, J. & Karch, F. A new homeotic mutation in the Drosophila bithorax complex removes a boundary separating two domains of regulation. EMBO J. 9, 2579–2585 (1990).

    Article  CAS  Google Scholar 

  13. Mihaly, J., Hogga, I., Gausz, J., Gyurkovics, H. & Karch, F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124, 1809–1820 (1997).

    CAS  PubMed  Google Scholar 

  14. Hagstrom, K., Muller, M. & Schedl, P. Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev. 10, 3202–3215 (1996).

    Article  CAS  Google Scholar 

  15. Zhou, J., Barolo, S., Szymanski, P. & Levine, M. The Fab-7 element of the bithorax complex attenuates enhancer-promoter interactions in the Drosophila embryo. Genes Dev. 10, 3195–3201 (1996).

    Article  CAS  Google Scholar 

  16. Zhou, J., Ashe, H., Burks, C. & Levine, M. Characterization of the transvection mediating region of the abdominal-B locus in Drosophila. Development 126, 3057–3065 (1999).

    CAS  PubMed  Google Scholar 

  17. Barges, S. et al. The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127, 779–790 (2000).

    CAS  PubMed  Google Scholar 

  18. Zhou, J. & Levine, M. A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell 99, 567–575 (1999).

    Article  CAS  Google Scholar 

  19. Chen, Q., Lin, L., Smith, S., Lin, Q. & Zhou, J. Multiple promoter targeting sequences exist in Abdominal-B to regulate long-range gene activation. Dev. Biol. 286, 629–636 (2005).

    Article  CAS  Google Scholar 

  20. Muller, M., Hagstrom, K., Gyurkovics, H., Pirrotta, V. & Schedl, P. The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153, 1333–1356 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 17, 2406–2420 (2003).

    Article  CAS  Google Scholar 

  22. Lebrun, E., Fourel, G., Defossez, P.A. & Gilson, E. A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol. Cell. Biol. 23, 1498–1508 (2003).

    Article  CAS  Google Scholar 

  23. Sipos, L. et al. Transvection in the Drosophila abd-B domain. Extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics 149, 1031–1050 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Siegal, M.L. & Hartl, D.L. Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422 (1996).

    Article  CAS  Google Scholar 

  26. Hogga, I., Mihaly, J., Barges, S. & Karch, F. Replacement of Fab-7 by the gypsy or scs insulator disrupts long-distance regulatory interactions in the Abd-B gene of the bithorax complex. Mol. Cell 8, 1145–1151 (2001).

    Article  CAS  Google Scholar 

  27. van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 27, 304–308 (2001).

    Article  CAS  Google Scholar 

  28. Tremml, G. & Bienz, M. Homeotic gene expression in the visceral mesoderm of Drosophila embryos. EMBO J. 8, 2677–2685 (1989).

    Article  CAS  Google Scholar 

  29. Celniker, S.E., Sharma, S., Keelan, D.J. & Lewis, E.B. The molecular genetics of the bithorax complex of Drosophila: cis-regulation in the Abdominal-B domain. EMBO J. 9, 4277–4286 (1990).

    Article  CAS  Google Scholar 

  30. Martin, C.H. et al. Complete sequence of the bithorax complex of Drosophila. Proc. Natl. Acad. Sci. USA 92, 8398–8402 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Rorth, B. van Steensel and S. Henikoff for providing plasmids, fly strains and advices. We are indebted to C. Barraclough, M. Docquier and P. Descombes of the NCCR Frontiers in Genetics genomics group for their advice and assistance in quantitative PCR. We also thank A. Mutero for her critical reading and comments on the manuscript. Finally, we wish to thank P. Verrijzer and H.Gyurkovics for stimulating discussions. This work was supported by the Swiss National Foundation, by the NCCR Frontiers in Genetics and by the State of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Karch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Boundary tethering model. (PDF 344 kb)

Supplementary Table 1

Primers used in this study and their positions in the bithorax complex. (PDF 48 kb)

Supplementary Table 2

Summary of two-way ANOVA analysis. (PDF 68 kb)

Supplementary Table 3

Tables summarizing two-way ANOVA analysis. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cléard, F., Moshkin, Y., Karch, F. et al. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nat Genet 38, 931–935 (2006). https://doi.org/10.1038/ng1833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing