Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

The genetics of plant metabolism

Abstract

Variation for metabolite composition and content is often observed in plants. However, it is poorly understood to what extent this variation has a genetic basis. Here, we describe the genetic analysis of natural variation in the metabolite composition in Arabidopsis thaliana. Instead of focusing on specific metabolites, we have applied empirical untargeted metabolomics using liquid chromatography–time of flight mass spectrometry (LC-QTOF MS). This uncovered many qualitative and quantitative differences in metabolite accumulation between A. thaliana accessions. Only 13.4% of the mass peaks were detected in all 14 accessions analyzed. Quantitative trait locus (QTL) analysis of more than 2,000 mass peaks, detected in a recombinant inbred line (RIL) population derived from the two most divergent accessions, enabled the identification of QTLs for about 75% of the mass signals. More than one-third of the signals were not detected in either parent, indicating the large potential for modification of metabolic composition through classical breeding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural variation in A. thaliana metabolite accumulation.
Figure 2: Genetic analysis of metabolite profiles in the A. thaliana Cvi × Ler RIL population.
Figure 3: Genetic regulation of aliphatic glucosinolate accumulation in A. thaliana.
Figure 4: Genetic variation in flavonol-glycoside accumulation in A. thaliana.

Similar content being viewed by others

References

  1. Wink, M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75, 225–233 (1988).

    Article  CAS  Google Scholar 

  2. Windsor, A.J. et al. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry 66, 1321–1333 (2005).

    Article  CAS  Google Scholar 

  3. Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  Google Scholar 

  4. Jansen, R.C. Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentsink, L. et al. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis . Plant Physiol. 124, 1595–1604 (2000).

    Article  CAS  Google Scholar 

  6. Hobbs, D.H., Flintham, J.E. & Hills, M.J. Genetic control of storage oil synthesis in seeds of Arabidopsis . Plant Physiol. 136, 3341–3349 (2004).

    Article  CAS  Google Scholar 

  7. Kliebenstein, D.J., Gershenzon, J. & Mitchell-Olds, T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159, 359–370 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Loudet, O., Chaillou, S., Merigout, P., Talbotec, J. & Daniel-Vedele, F. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis . Plant Physiol. 131, 345–358 (2003).

    Article  CAS  Google Scholar 

  9. Mita, S., Murano, N., Akaike, M. & Nakamura, K. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 11, 841–851 (1997).

    Article  CAS  Google Scholar 

  10. Tikunov, Y. et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 139, 1125–1137 (2005).

    Article  CAS  Google Scholar 

  11. Vorst, O. et al. A non-directed approach to the differential analysis of multiple LC-MS-derived metabolic profiles. Metabolomics 1, 169–180 (2005).

    Article  CAS  Google Scholar 

  12. Dixon, R.A. Engineering of plant natural product pathways. Curr. Opin. Plant Biol. 8, 329–336 (2005).

    Article  CAS  Google Scholar 

  13. Alonso-Blanco, C. et al. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 14, 259–271 (1998).

    Article  CAS  Google Scholar 

  14. Broman, K.W. Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163, 1169–1175 (2003).

    PubMed  PubMed Central  Google Scholar 

  15. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

  16. de Koning, D.J. & Haley, C.S. Genetical genomics in humans and model organisms. Trends Genet. 21, 377–381 (2005).

    Article  CAS  Google Scholar 

  17. Mitchell-Olds, T. & Pedersen, D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis . Genetics 149, 739–747 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reichelt, M. et al. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana . Phytochemistry 59, 663–671 (2002).

    Article  CAS  Google Scholar 

  19. Kliebenstein, D.J. et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825 (2001).

    Article  CAS  Google Scholar 

  20. Kroymann, J. et al. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127, 1077–1088 (2001).

    Article  CAS  Google Scholar 

  21. Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. & Mitchell-Olds, T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis . Plant Cell 13, 681–693 (2001).

    Article  CAS  Google Scholar 

  22. de la Fuente, A., Bing, N., Hoeschele, I. & Mendes, P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20, 3565–3574 (2004).

    Article  CAS  Google Scholar 

  23. Li, Y., Baldauf, S., Lim, E. & Bowles, D.J. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana . J. Biol. Chem. 276, 4338–4343 (2001).

    Article  CAS  Google Scholar 

  24. Lim, E., Ashford, D.A., Hou, B., Jackson, G. & Bowles, D.J. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol. Bioeng. 87, 623–631 (2004).

    Article  CAS  Google Scholar 

  25. D'Auria, J.C. & Gershenzon, J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8, 308–316 (2005).

    Article  CAS  Google Scholar 

  26. Alba, R. et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954–2965 (2005).

    Article  CAS  Google Scholar 

  27. Lumba, S. & McCourt, P. Preventing leaf identity theft with hormones. Curr. Opin. Plant Biol. 8, 501–505 (2005).

    Article  CAS  Google Scholar 

  28. Oksman-Caldentey, K.M. & Saito, K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr. Opin. Biotechnol. 16, 174–179 (2005).

    Article  CAS  Google Scholar 

  29. Lall, S., Nettleton, D., DeCook, R., Che, P. & Howell, S.H. Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis . Genetics 167, 1883–1892 (2004).

    Article  CAS  Google Scholar 

  30. DeCook, R., Lall, S., Nettleton, D. & Howell, S.H. Genetic regulation of gene expression during shoot development in Arabidopsis . Genetics 172, 1155–1164 (2006).

    Article  CAS  Google Scholar 

  31. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  32. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  33. Jansen, R.C. Studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet. 4, 145–151 (2003).

    Article  CAS  Google Scholar 

  34. Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana . Annu. Rev. Plant Biol. 55, 141–172 (2004).

    Article  CAS  Google Scholar 

  35. Stam, P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 3, 739–744 (1993).

    Article  CAS  Google Scholar 

  36. McCullagh, P. & Nelder, J.A. Generalized Linear Models (Chapman & Hall, New York, 1989).

    Book  Google Scholar 

  37. Bing, N. & Hoeschele, I. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170, 533–542 (2005).

    Article  CAS  Google Scholar 

  38. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  Google Scholar 

  39. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Netherlands Organization for Scientific Research, Program Genomics (050-10-029) and the Centre for Biosystems Genomics (CBSG, Netherlands Genomics Initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Koornneef.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hierarchical clustering of accessions for metabolite content. (PDF 166 kb)

Supplementary Fig. 2

Frequency distribution of the number of QTLs detected for each mass signal. (PDF 3 kb)

Supplementary Fig. 3

Frequency distribution of broad sense heritability of each detected mass in the RIL population. (PDF 4 kb)

Supplementary Fig. 4

Frequency distribution of the contribution to QTL significance of the binominal part in the two-part parametric model. (PDF 294 kb)

Supplementary Fig. 5

Binominal and quantitative variance explained by QTLs. (PDF 558 kb)

Supplementary Table 1

Arabidopsis thaliana accessions used in the analysis of natural variation for metabolite content. (PDF 3 kb)

Supplementary Table 2

Detected QTL at and epistatic effects between MAM and AOP loci for aliphatic glucosinolates. (PDF 4 kb)

Supplementary Table 3

Phenotypic and mapping data of aliphatic glucosinolates. (PDF 6 kb)

Supplementary Table 4

Identification of flavonols. (PDF 5 kb)

Supplementary Methods (PDF 7 kb)

Supplementary Note (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keurentjes, J., Fu, J., de Vos, C. et al. The genetics of plant metabolism. Nat Genet 38, 842–849 (2006). https://doi.org/10.1038/ng1815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing