Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster

A Corrigendum to this article was published on 01 July 2006


Polycomb group (PcG) proteins maintain transcriptional repression of developmentally important genes1 and have been implicated in cell proliferation and stem cell self-renewal2. We used a genome-wide approach3 to map binding patterns of PcG proteins (Pc, esc and Sce) in Drosophila melanogaster Kc cells. We found that Pc associates with large genomic regions of up to 150 kb in size, hereafter referred to as 'Pc domains'. Sce and esc accompany Pc in most of these domains. PcG-bound chromatin is trimethylated at histone H3 Lys27 and is generally transcriptionally silent. Furthermore, PcG proteins preferentially bind to developmental genes. Many of these encode transcriptional regulators and key components of signal transduction pathways, including Wingless, Hedgehog, Notch and Delta. We also identify several new putative functions of PcG proteins, such as in steroid hormone biosynthesis. These results highlight the extensive involvement of PcG proteins in the coordination of development through the formation of large repressive chromatin domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pc binds large genomic regions or 'domains'.
Figure 2: PcG proteins bind largely to same genomic sites.
Figure 3: PcG-bound chromatin is trimethylated at Lys27 of histone H3.
Figure 4: PcG-bound chromatin is transcriptionally repressed.
Figure 5: Developmental expression of genes located within Pc domains.
Figure 6: Functional role of PcG proteins in Kc cells.

Similar content being viewed by others


  1. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  Google Scholar 

  2. Valk-Lingbeek, M.E., Bruggeman, S.W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).

    Article  CAS  Google Scholar 

  3. van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 27, 304–308 (2001).

    Article  CAS  Google Scholar 

  4. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

    Article  CAS  Google Scholar 

  5. Sun, L.V. et al. Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proc. Natl. Acad. Sci. USA 100, 9428–9433 (2003).

    Article  CAS  Google Scholar 

  6. Nègre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).

    Article  Google Scholar 

  7. Ringrose, L., Rehmsmeier, M., Dura, J.M. & Paro, R. Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell 5, 759–771 (2003).

    Article  CAS  Google Scholar 

  8. Dejardin, J. et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533–538 (2005).

    Article  CAS  Google Scholar 

  9. Greil, F. et al. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 17, 2825–2838 (2003).

    Article  CAS  Google Scholar 

  10. Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 32, 438–442 (2002).

    Article  Google Scholar 

  11. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  Google Scholar 

  12. Breiling, A., O'Neill, L.P., D'Eliseo, D., Turner, B.M. & Orlando, V. Epigenome changes in active and inactive polycomb-group-controlled regions. EMBO Rep. 5, 976–982 (2004).

    Article  CAS  Google Scholar 

  13. Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306, 655–660 (2004).

    Article  CAS  Google Scholar 

  14. Ficz, G., Heintzmann, R. & Arndt-Jovin, D.J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963–3976 (2005).

    Article  CAS  Google Scholar 

  15. Hernandez-Munoz, I., Taghavi, P., Kuijl, C., Neefjes, J. & vanLohuizen, M. Assocation of BMI1 with Polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell. Biol. 25, 11047–11058 (2005).

    Article  CAS  Google Scholar 

  16. Harris, M.A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article  CAS  Google Scholar 

  17. Lascaris, R. et al. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol. 4, R3 (2003).

    Article  Google Scholar 

  18. Kirmizis, A., Bartley, S.M. & Farnham, P.J. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol. Cancer Ther. 2, 113–121 (2003).

    CAS  PubMed  Google Scholar 

  19. Klebes, A. et al. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132, 3753–3765 (2005).

    Article  CAS  Google Scholar 

  20. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  Google Scholar 

  21. Maurange, C. & Paro, R. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev. 16, 2672–2683 (2002).

    Article  CAS  Google Scholar 

  22. Paul, S.M., Ternet, M., Salvaterra, P.M. & Beitel, G.J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963–4974 (2003).

    Article  CAS  Google Scholar 

  23. Warren, J.T. et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 11043–11048 (2002).

    Article  CAS  Google Scholar 

  24. Baehrecke, E.H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ. 7, 1057–1062 (2000).

    Article  CAS  Google Scholar 

  25. Henikoff, S., Ahmad, K., Platero, J.S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721 (2000).

    Article  CAS  Google Scholar 

  26. Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    Article  Google Scholar 

  27. van Steensel, B., Delrow, J. & Bussemaker, H.J. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc. Natl. Acad. Sci. USA 100, 2580–2585 (2003).

    Article  CAS  Google Scholar 

  28. Baldi, P. & Long, A.D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509–519 (2001).

    Article  CAS  Google Scholar 

  29. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodolog. 57, 289–300 (1995).

    Google Scholar 

  30. Rietveld, L.E., Caldenhoven, E. & Stunnenberg, H.G. In vivo repression of an erythroid-specific gene by distinct corepressor complexes. EMBO J. 21, 1389–1397 (2002).

    Article  CAS  Google Scholar 

Download references


We thank G. Cavalli and N. Nègre for sharing unpublished results and for providing Pc and ph antibodies; J. Müller for Su(z)12 antibody; F. Greil, H. Pickersgill, M. Heimerickx and the NKI Central Microarray Facility for technical assistance; M. Fornerod for sharing R scripts; H. Bussemaker for the Quontology script; the Genomics Facility of the Fred Hutchinson Cancer Research Center for preparing 12K cDNAs and A. Brinkman and H. Stunnenberg for help with ChIP. This work was supported by a Veni fellowship from the Netherlands Organisation for Scientific Research (NWO) to B.T., a fellowship from the Association of International Cancer Research to I.M., a Centre for Biomedical Genetics grant to M.v.L. and support from the European 'Epigenome' Network of Excellence and a European Young Investigator (EURYI) award to B.v.S.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Bas van Steensel or Maarten van Lohuizen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PcG-Dam fusions incorporate into native PRCs. (PDF 60 kb)

Supplementary Fig. 2

Overview of all identified Pc domains. (PDF 1352 kb)

Supplementary Fig. 3

Pc, GAF and HP1 binding on the Adh-cactus region. (PDF 76 kb)

Supplementary Fig. 4

Correspondence between Pc binding analyzed on two microarray platforms. (PDF 89 kb)

Supplementary Fig. 5

Nuclear localization of endogenous Pc and HP1 proteins. (PDF 43 kb)

Supplementary Table 1

Binding ratios of reported PcG target genes. (PDF 30 kb)

Supplementary Table 2

Pc domains identified using genomic tiling arrays. (PDF 40 kb)

Supplementary Table 3

Quontology data PcG protein binding profiles. (XLS 255 kb)

Supplementary Table 4

Pc targets for each GO category enriched for Pc binding. (XLS 100 kb)

Supplementary Table 5

Pc targets in 'Ectoderm development' GO category. (PDF 49 kb)

Supplementary Table 6

Gene ontology on genes identified in Pc domains. (XLS 164 kb)

Supplementary Methods (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolhuis, B., Muijrers, I., de Wit, E. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38, 694–699 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing