Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functions of microRNAs and related small RNAs in plants

An Erratum to this article was published on 01 July 2006

Abstract

MicroRNAs (miRNAs) and short interfering RNAs (siRNAs), 20- to 27-nt in length, are essential regulatory molecules that act as sequence-specific guides in several processes in most eukaryotes (with the notable exception of the yeast Saccharomyces cerevisiae). These processes include DNA elimination, heterochromatin assembly, mRNA cleavage and translational repression. This review focuses on the regulatory roles of plant miRNAs during development, in the adaptive response to stresses and in the miRNA pathway itself. This review also covers the regulatory roles of two classes of endogenous plant siRNAs, ta-siRNAs and nat-siRNAs, which participate in post-transcriptional control of gene expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The plant miRNA pathway and miRNA pathway Arabidopsis thaliana mutants.
Figure 2: Plant miRNAs regulate overlapping networks.
Figure 3: Schematic representation of plant miRNA regulatory mechanisms.

References

  1. 1

    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Kim, V.N. Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1–15 (2005).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Du, T. & Zamore, P.D. microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652 (2005).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Bao, N., Lye, K.W. & Barton, M.K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7, 653–662 (2004).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Chan, S.W., Henderson, I.R. & Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Matzke, M.A., Matzke, A.J., Pruss, G.J. & Vance, V.B. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 11, 221–227 (2001).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Verdel, A. & Moazed, D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett. 579, 5872–5878 (2005).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, 642–652 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Akbergenov, R. et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res. 34, 462–471 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Dunoyer, P. & Voinnet, O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr. Opin. Plant Biol. 8, 415–423 (2005).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Pruss, G., Ge, X., Shi, X.M., Carrington, J.C. & Bowman Vance, V. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9, 859–868 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Vance, V. & Vaucheret, H. RNA silencing in plants—defense and counterdefense. Science 292, 2277–2280 (2001).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Xie, Z., Allen, E., Wilken, A. & Carrington, J.C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 12984–12989 (2005).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Yoshikawa, M., Peragine, A., Park, M.Y. & Poethig, R.S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R. & Zhu, J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279–1291 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Chan, S.W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Kurihara, Y. & Watanabe, Y. Arabidopsis microRNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753–12758 (2004).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Kurihara, Y., Takashi, Y. & Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Han, M.H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl. Acad. Sci. USA 101, 1093–1098 (2004).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484–1495 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Vazquez, F., Gasciolli, V., Crété, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14, 346–351 (2004).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Vaucheret, H., Vazquez, F., Crété, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Qi, Y., Denli, A.M. & Hannon, G.J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Baumberger, N. & Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 102, 11928–11933 (2005).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. & Poethig, R.S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 3691–3696 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Xie, Z., Kasschau, K.D. & Carrington, J.C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA. Curr. Biol. 13, 784–789 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Aukerman, M.J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Schwab, R. et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517–527 (2005).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Jacobsen, S.E., Running, M.P. & Meyerowitz, E.M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231–5243 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lu, C. & Fedoroff, N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12, 2351–2366 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Telfer, A. & Poethig, R.S. HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125, 1889–1898 (1998).

    CAS  PubMed  Google Scholar 

  50. 50

    Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Chen, X., Liu, J., Cheng, Y. & Jia, D. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129, 1085–1094 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Kasschau, K.D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Morel, J.B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469–481 (1999).

    CAS  PubMed  Google Scholar 

  56. 56

    Hiraguri, A. et al. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol. Biol. 57, 173–188 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    McConnell, J.R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Emery, J.F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Rhoades, M.W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Tang, G., Reinhart, B.J., Bartel, D.P. & Zamore, P.D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Mallory, A.C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Kim, J. et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J. 42, 84–94 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Williams, L., Grigg, S.P., Xie, M., Christensen, S. & Fletcher, J.C. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132, 3657–3668 (2005).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Baker, C.C., Sieber, P., Wellmer, F. & Meyerowitz, E.M. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15, 303–315 (2005).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Guo, H.S., Xie, Q., Fei, J.F. & Chua, N.H. microRNA164 directs NAC1 mRNA cleavage to downregulate auxin signals for lateral root development. Plant Cell 17, 1376–1386 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Mallory, A.C., Dugas, D.V., Bartel, D.B. & Bartel, B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative and floral organs. Curr. Biol. 14, 1035–1046 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Achard, P., Herr, A., Baulcombe, D.C. & Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Wang, J.W. et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17, 2204–2216 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Laufs, P., Peaucelle, A., Morin, H. & Traas, J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311–4322 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Millar, A.A. & Gubler, F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705–721 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Mallory, A.C., Bartel, D.P. & Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360–1375 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Sunkar, R. & Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Jones-Rhoades, M.W. & Bartel, D.P. Computational identification of plant miRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787–799 (2004).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Chiou, T.J. et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Fujii, H., Chiou, T.J., Lin, S.I., Aung, K. & Zhu, J.K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043 (2005).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Lu, S. et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17, 2186–2203 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Wang, X.J., Gaasterland, T. & Chua, N.H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 6, R30 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78

    Lecellier, C.H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Takeda, A. et al. A plant RNA virus suppresses RNA silencing through viral RNA replication. EMBO J. 24, 3147–3157 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Dunoyer, P., Himber, C. & Voinnet, O. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat. Genet. 38, 258–263 (2006).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Llave, C. MicroRNAs: more than a role in plant development? Mol. Plant Pathol. 5, 361–366 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Li, H.W. & Ding, S.W. Antiviral silencing in animals. FEBS Lett. 579, 5965–5973 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Simon-Mateo, C. & Garcia, J.A. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J. Virol. 80, 2429–2436 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Mallory, A.C., Reinhart, B.J., Bartel, D., Vance, V.B. & Bowman, L.H. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc. Natl. Acad. Sci. USA 99, 15228–15233 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V. & Carrington, J.C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Vaucheret, H., Mallory, A.C. & Bartel, D.P. AGO1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell 22, 129–136 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Brennecke, J. & Cohen, S.M. Towards a complete description of the microRNA complement of animal genomes. Genome Biol. 4, 228 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Jones-Rhoades, M.W., Bartel, D.P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. published online 30 January 2006 (doi:10.1146/annurev.arplant.57.032905.105218).

  94. 94

    Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Gustafson, A.M. et al. ASRP: the Arabidopsis small RNA project database. Nucleic Acids Res. 33, D637–D640 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Bartel and members of the Vaucheret and Bartel labs for fruitful discussions. Work in the Vaucheret laboratory is supported by the Institut National de la Recherche Agronomique (INRA) and the European Commission (Riboreg program). A.C.M. is supported by a US National Institutes of Health Postdoctoral Training Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hervé Vaucheret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallory, A., Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nat Genet 38, S31–S36 (2006). https://doi.org/10.1038/ng1791

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing