Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic regulators of large-scale transcriptional signatures in cancer

Abstract

Gene expression signatures encompassing dozens to hundreds of genes have been associated with many important parameters of cancer, but mechanisms of their control are largely unknown. Here we present a method based on genetic linkage that can prospectively identify functional regulators driving large-scale transcriptional signatures in cancer. Using this method we show that the wound response signature, a poor-prognosis expression pattern of 512 genes in breast cancer, is induced by coordinate amplifications of MYC and CSN5 (also known as JAB1 or COPS5). This information enabled experimental recapitulation, functional assessment and mechanistic elucidation of the wound signature in breast epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of SLAMS analysis procedure.
Figure 2: Linkage of MYC and CSN5 amplifications with wound signature.
Figure 3: Association of MYC and CSN5 genomic DNA amplification with wound signature in an independent set of breast tumors.
Figure 4: MYC and CSN5 activate the wound signature.
Figure 5: MYC and CSN5 induce features of invasive cancer cells.
Figure 6: CSN5 induces MYC ubiquitination, turnover and activation of select MYC target genes.
Figure 7: CSN5 is required for SKP2 activity, stability and transcriptional activity of MYC.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Liu, E.T. Classification of cancers by expression profiling. Curr. Opin. Genet. Dev. 13, 97–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van 't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Chang, H.Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biol. 2, 206–214 (2004).

    Article  CAS  Google Scholar 

  6. Pollack, J.R. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99, 12963–12968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, E. et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat. Genet. 34, 226–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet. 37, 48–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Bissell, M.J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cooper, L., Johnson, C., Burslem, F. & Martin, P. Wound healing and inflammation genes revealed by array analysis of 'macrophageless' PU.1 null mice. Genome Biol. 6, R5 (2005).

    Article  PubMed  Google Scholar 

  12. Chang, H.Y. et al. Robustness, scalability, and integration of a wound response gene expression signature in predicting survival of human breast cancer patients. Proc. Natl. Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Segal, E., Friedman, N., Koller, D. & Regev, A. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36, 1090–1098 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cope, G.A. & Deshaies, R.J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ginzinger, D.G. et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis. Cancer Res. 60, 5405–5409 (2000).

    CAS  PubMed  Google Scholar 

  18. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kelly, K., Cochran, B.H., Stiles, C.D. & Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603–610 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Frank, S.R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Felsher, D.W., Zetterberg, A., Zhu, J., Tlsty, T. & Bishop, J.M. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc. Natl. Acad. Sci. USA 97, 10544–10548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez, P.C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soule, H.D. et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990).

    CAS  PubMed  Google Scholar 

  25. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, E.V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lamb, J. et al. A mechanism of cyclin d1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Amati, B. Myc degradation: dancing with ubiquitin ligases. Proc. Natl. Acad. Sci. USA 101, 8843–8844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, S.Y., Herbst, A., Tworkowski, K.A., Salghetti, S.E. & Tansey, W.P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Wee, S., Geyer, R.K., Toda, T. & Wolf, D.A. CSN facilitates Cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat. Cell Biol. 7, 387–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Alt, J.R., Greiner, T.C., Cleveland, J.L. & Eischen, C.M. Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J. 22, 1442–1450 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slack, A. et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc. Natl. Acad. Sci. USA 102, 731–736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diehn, M. et al. SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 31, 219–223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z.C. et al. Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res. 64, 64–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Aguirre, A.J. et al. High-resolution characterization of the pancreatic adenocarcinoma genome. Proc. Natl. Acad. Sci. USA 101, 9067–9072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, J.J. et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3, 483–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Bemis, L. et al. Distinct aerobic and hypoxic mechanisms of HIF-alpha regulation by CSN5. Genes Dev. 18, 739–744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chi, J.T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 6343–6346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, B.C. et al. Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol. 24, 2251–2262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang, H.Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Huntziker, A.E. Oro, W. Tansey, L. Bemis, X. Chen and D.W. Felsher for reagents, T.W. Ridky and P.A. Khavari for assistance with animal experiments, Y. Liu for technical assistance, members of the Program in Epithelial Biology for discussion and D.W. Felsher, P.A. Khavari, A.E. Oro, E. Segal and J.L. Rinn for comments on the manuscript. This work was supported by grants from the US National Institutes of Health (AR050007, CA09302) and the Dutch Cancer Society (NKB 2002-2575). H.Y.C. is a Damon Runyon Scholar supported by the Damon Runyon Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Y Chang.

Ethics declarations

Competing interests

A.S.A., M.L. and H.Y.C. are named as inventors on a patent application describing the SLAMS method.

Supplementary information

Supplementary Fig. 1

DNA copy number and expession patterns of MYC and CSN5. (PDF 66 kb)

Supplementary Fig. 2

Nonlinear relationship between wound signature score and probability of gene coregulation. (PDF 75 kb)

Supplementary Table 1

DNA amplification associated with wound signature expression. (PDF 259 kb)

Supplementary Table 2

List of published prognostic signatures in human breast cancer used in the gene module map analysis. (PDF 217 kb)

Supplementary Table 3

MYC target genes that are coactivated by CSN5 expression. (PDF 240 kb)

Supplementary Table 4

Primer sequences for quantitative microsatellite analysis (QuMA). (PDF 154 kb)

Supplementary Note (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, A., Lin, M., Horlings, H. et al. Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38, 421–430 (2006). https://doi.org/10.1038/ng1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing