Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat

Abstract

Meckel-Gruber syndrome is a severe autosomal, recessively inherited disorder characterized by bilateral renal cystic dysplasia, developmental defects of the central nervous system (most commonly occipital encephalocele), hepatic ductal dysplasia and cysts and polydactyly1,2,3. MKS is genetically heterogeneous, with three loci mapped: MKS1, 17q21-24 (ref. 4); MKS2, 11q13 (ref. 5) and MKS3 (ref. 6). We have refined MKS3 mapping to a 12.67-Mb interval (8q21.13-q22.1) that is syntenic to the Wpk locus in rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus7,8. Positional cloning of the Wpk gene suggested a MKS3 candidate gene, TMEM67, for which we identified pathogenic mutations for five MKS3-linked consanguineous families. MKS3 is a previously uncharacterized, evolutionarily conserved gene that is expressed at moderate levels in fetal brain, liver and kidney but has widespread, low levels of expression. It encodes a 995–amino acid seven-transmembrane receptor protein of unknown function that we have called meckelin.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Refinement of the MKS3 gene locus by haplotype analysis in the consanguineous pedigrees 29A and 33A, 67F, 40T and 125.
Figure 2: Identification the MKS3 gene by direct mutational analysis of positional candidates.
Figure 3: Genetic and physical mapping of the Wpk gene.
Figure 4: RNA blot and real-time PCR analyses of MKS3 expression.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ahdab-Barmada, M. & Claassen, D. A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J. Neuropathol. Exp. Neurol. 49, 610–620 (1990).

    Article  CAS  Google Scholar 

  2. Salonen, R. & Paavola, P. Meckel syndrome. J. Med. Genet. 35, 497–501 (1998).

    Article  CAS  Google Scholar 

  3. Al-Gazali, L.I., Abdel Raziq, A., Al-Shather, W., Shahzadi, R. & Azhar, N. Meckel syndrome and Dandy Walker malformation. Clin. Dysmorphol. 5, 73–76 (1996).

    Article  CAS  Google Scholar 

  4. Paavola, P., Salonen, R., Weissenbach, J. & Peltonen, L. The locus for Meckel syndrome with multiple congenital anomalies maps to chromosome 17q21-q24. Nat. Genet. 11, 213–215 (1995).

    Article  CAS  Google Scholar 

  5. Roume, J. et al. A gene for Meckel syndrome maps to chromosome 11q13. Am. J. Hum. Genet. 63, 1095–1101 (1998).

    Article  CAS  Google Scholar 

  6. Morgan, N.V. et al. A novel locus for Meckel-Gruber syndrome, MKS3, maps to chromosome 8q24. Hum. Genet. 111, 456–461 (2002).

    Article  CAS  Google Scholar 

  7. Nauta, J. et al. New rat model that phenotypically resembles autosomal recessive polycystic kidney disease. J. Am. Soc. Nephrol. 11, 2272–2284 (2000).

    CAS  PubMed  Google Scholar 

  8. Gattone, V.H. II et al. Development of multiorgan pathology in the wpk rat model of polycystic kidney disease. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 277, 384–395 (2004).

    Article  Google Scholar 

  9. Fraser, F.C. & Lytwyn, A. Spectrum of anomalies in the Meckel syndrome or: “Maybe there is a malformation syndrome with at least one constant anomaly. Am. J. Med. Genet. 9, 67–73 (1981).

    Article  CAS  Google Scholar 

  10. Salonen, R. The Meckel syndrome: clinicopathological findings in 67 patients. Am. J. Med. Genet. 18, 671–689 (1984).

    Article  CAS  Google Scholar 

  11. Blankenberg, T.A., Ruebner, B.H., Ellis, W.G., Bernstein, J. & Dimmick, J.E. Pathology of renal and hepatic anomalies in Meckel syndrome. Am. J. Med. Genet. 3 (Suppl.), 395–410 (1987).

    Article  CAS  Google Scholar 

  12. Simpson, J.L. et al. Genetic heterogeneity in neural tube defects. Ann. Genet. 34, 279–286 (1991).

    CAS  PubMed  Google Scholar 

  13. Xu, Y.K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–R406 (1998).

    Article  CAS  Google Scholar 

  14. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  15. Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M. & Mlodzik, M. Diego and Prickle regulate Frizzled planar cell polarity signaling by competing for Dishevelled binding. Nat. Cell Biol. 7, 691–697 (2005).

    Article  CAS  Google Scholar 

  16. Povelones, M., Howes, R., Fish, M. & Nusse, R. Genetic evidence that Drosophila Frizzled controls planar cell polarity and Armadillo signaling by a common mechanism. Genetics (in the press).

  17. Ross, A.J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  18. Ansley, S.J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425, 628–633 (2003).

    Article  CAS  Google Scholar 

  19. Beales, P.L. Lifting the lid on Pandora's box: the Bardet-Biedl syndrome. Curr. Opin. Genet. Dev. 15, 315–323 (2005).

    Article  CAS  Google Scholar 

  20. Karmous-Benailly, H. et al. Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome. Am. J. Hum. Genet. 76, 493–504 (2005).

    Article  CAS  Google Scholar 

  21. Badano, J.L., Teslovich, T.M. & Katsanis, N. The centrosome in human genetic disease. Nat. Rev. Genet. 6, 194–205 (2005).

    Article  CAS  Google Scholar 

  22. Calvet, J.P. New insights into ciliary function: kidney cysts and photoreceptors. Proc. Natl. Acad. Sci. USA 100, 5583–5585 (2003).

    Article  CAS  Google Scholar 

  23. Pazour, G.J. Comparative genomics: prediction of the ciliary and basal body proteome. Curr. Biol. 14, R575–R577 (2004).

    Article  CAS  Google Scholar 

  24. Efimenko, E. et al. Analysis of xbx genes in C. elegans. Development 132, 1923–1934 (2005).

    Article  CAS  Google Scholar 

  25. Sambrook, J. & Russell, D.W. Molecular Cloning, a Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  26. Consugar, M.B. et al. Haplotype analysis improves molecular diagnostics of autosomal recessive polycystic kidney disease. Am. J. Kidney Dis. 45, 77–87 (2005).

    Article  CAS  Google Scholar 

  27. Maina, E.N. et al. Identification of novel VHL target genes and relationship to hypoxic response pathways. Oncogene 24, 4549–4558 (2005).

    Article  CAS  Google Scholar 

  28. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  29. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).

    Article  CAS  Google Scholar 

  30. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MKS families for their generous help. We are grateful to M. Barr for useful discussions. This research was supported by grants from the Wellcome Trust to R.C.T. and E.R.M.; by grants to C.A.J. from the UK Birth Defects Foundation, University of Birmingham Medical School Scientific Projects and Birmingham Women's Hospital Research Fund; and by grants from the US National Institutes of Health, the PKD Foundation and the Mayo Foundation to V.H.G. and to P.C.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter C Harris or Colin A Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of meckelin proteins from human, rat, mouse, chicken and Tetraodon nigroviridis. (PDF 1360 kb)

Supplementary Table 1

Intron/exon structure of MKS3/TMEM67 and Mks3/Tmem67. (PDF 99 kb)

Supplementary Table 2

Novel human chromosome 8 microsatellite markers for the MKS3 locus and novel rat chromosme 5 microsatellite markers for the Wpk locus. (PDF 86 kb)

Supplementary Table 3

Sequencing primers for the MKS3/TMEM67 gene. (PDF 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, U., Consugar, M., Tee, L. et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 38, 191–196 (2006). https://doi.org/10.1038/ng1713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing