Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evaluating potential for whole-genome studies in Kosrae, an isolated population in Micronesia

Abstract

Whole-genome association studies are predicted to be especially powerful in isolated populations owing to increased linkage disequilibrium (LD) and decreased allelic diversity, but this possibility has not been empirically tested1,2,3. We compared genome-wide data on 113,240 SNPs typed on 30 trios from the Pacific island of Kosrae to the same markers typed in the 270 samples from the International HapMap Project4,5. The extent of LD is longer and haplotype diversity is lower in Kosrae than in the HapMap populations. More than 98% of Kosraen haplotypes are present in HapMap populations, indicating that HapMap will be useful for genetic studies on Kosrae. The long-range LD around common alleles and limited diversity result in improved efficiency in genetic studies in this population and augments the power to detect association of 'hidden SNPs'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allele frequency distribution.
Figure 2: Decay of linkage disequilibrium over distance.
Figure 3: Haplotype diversity.
Figure 4: Association study power comparison.

Similar content being viewed by others

References

  1. de la Chapelle, A. & Wright, F.A. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc. Natl. Acad. Sci. USA 95, 12416–12423 (1998).

    Article  CAS  Google Scholar 

  2. Shifman, S. & Darvasi, A. The value of isolated populations. Nat. Genet. 28, 309–310 (2001).

    Article  CAS  Google Scholar 

  3. Wright, A.F., Carothers, A.D. & Pirastu, M. Population choice in mapping genes for complex diseases. Nat. Genet. 23, 397–404 (1999).

    Article  CAS  Google Scholar 

  4. the International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  5. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  6. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  Google Scholar 

  7. Jorde, L.B. Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56, 11–14 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, N. et al. A genomewide linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome oxidase deficiency to 2p16. Am. J. Hum. Genet. 68, 397–409 (2001).

    Article  CAS  Google Scholar 

  9. Eaves, I.A. et al. The genetically isolated populations of Finland and sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat. Genet. 25, 320–323 (2000).

    Article  CAS  Google Scholar 

  10. Shifman, S., Kuypers, J., Kokoris, M., Yakir, B. & Darvasi, A. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 12, 771–776 (2003).

    Article  CAS  Google Scholar 

  11. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22, 139–144 (1999).

    Article  CAS  Google Scholar 

  12. Laan, M. & Paabo, S. Demographic history and linkage disequilibrium in human populations. Nat. Genet. 17, 435–438 (1997).

    Article  CAS  Google Scholar 

  13. Angius, A. et al. Not all isolates are equal: linkage disequilibrium analysis on Xq13.3 reveals different patterns in Sardinian sub-populations. Hum. Genet. 111, 9–15 (2002).

    Article  CAS  Google Scholar 

  14. Shmulewitz, D. et al. Linkage analysis of quantitative traits related to obesity, type II diabetes, hypertentsion and dyslipidemia (metabolic syndrome) on the island of Kosrae, Federated States of Micronesia. Proc. Natl. Acad. Sci. USA (accepted).

  15. Segal, H.G. Kosrae: The Sleeping Lady Awakens (Kosrae State Tourist Division, Department of Conservation and Development, Kosrae State Government, Federated States of Micronesia, 1995).

    Google Scholar 

  16. Reich, D.E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  Google Scholar 

  17. Carlson, C.S., Eberle, M.A., Kruglyak, L. & Nickerson, D.A. Mapping complex disease loci in whole-genome association studies. Nature 429, 446–452 (2004).

    Article  CAS  Google Scholar 

  18. Lin, S., Chakravarti, A. & Cutler, D.J. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat. Genet. 36, 1181–1188 (2004).

    Article  CAS  Google Scholar 

  19. Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74, 979–1000 (2004).

    Article  CAS  Google Scholar 

  20. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Doerge, R.W. & Churchill, G.A. Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285–294 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Steen, K. et al. Genomic screening and replication using the same data set in family-based association testing. Nat. Genet. 37, 683–691 (2005).

    Article  CAS  Google Scholar 

  24. Wilk, J.B. et al. Family-based association tests for qualitative and quantitative traits using single-nucleotide polymorphism and microsatellite data. Genet. Epidemiol. 21 (Suppl. 1), S364–S369 (2001).

    Article  Google Scholar 

  25. Zhang, J., Schneider, D., Ober, C. & McPeek, M.S. Multilocus linkage disequilibrium mapping by the decay of haplotype sharing with samples of related individuals. Genet. Epidemiol. 29, 128–140 (2005).

    Article  Google Scholar 

  26. Ober, C., Abney, M. & McPeek, M.S. The genetic dissection of complex traits in a founder population. Am. J. Hum. Genet. 69, 1068–1079 (2001).

    Article  CAS  Google Scholar 

  27. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sullivan for technical assistance and R. Ferrell for the Beni samples. We thank the Government and Department of Health of Kosrae for their partnership and the people of Kosrae for making this study possible. The authors thank The Starr Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M Friedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnen, P., Pe'er, I., Plenge, R. et al. Evaluating potential for whole-genome studies in Kosrae, an isolated population in Micronesia. Nat Genet 38, 214–217 (2006). https://doi.org/10.1038/ng1712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing