Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dosage compensation of the active X chromosome in mammals

Abstract

Monosomy of the X chromosome owing to divergence between the sex chromosomes leads to dosage compensation mechanisms to restore balanced expression between the X and the autosomes. In Drosophila melanogaster, upregulation of the male X leads to dosage compensation. It has been hypothesized that mammals likewise upregulate their active X chromosome. Together with X inactivation, this mechanism would maintain balanced expression between the X chromosome and autosomes and between the sexes. Here, we show that doubling of the global expression level of the X chromosome leads to dosage compensation in somatic tissues from several mammalian species. X-linked genes are highly expressed in brain tissues, consistent with a role in cognitive functions. Furthermore, the X chromosome is expressed but not upregulated in spermatids and secondary oocytes, preserving balanced expression of the genome in these haploid cells. Upon fertilization, upregulation of the active X must occur to achieve the observed dosage compensation in early embryos.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Twofold upregulation of the X chromosome in human and mouse somatic tissues.
Figure 2: Twofold upregulation of the X chromosome in mammalian species and D. melanogaster.
Figure 3: X chromosome upregulation in males and females.
Figure 4: X-linked genes are highly expressed in brain.
Figure 5: X chromosome expression in male and female sex-specific tissues and germ cells and in embryos.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. 1

    Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B 355, 1563–1572 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Lyon, M. Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190, 372–373 (1961).

    CAS  Article  Google Scholar 

  3. 3

    Ohno, S. Sex Chromosomes and Sex Linked Genes (Springer Verlag, Berlin, 1967).

    Book  Google Scholar 

  4. 4

    Birchler, J.A., Pal-Bhadra, M. & Bhadra, U. Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117, 179–190 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Straub, T., Dahlsveen, I.K. & Becker, P.B. Dosage compensation in flies: mechanism, models, mystery. FEBS Lett. 579, 3258–3263 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  6. 6

    Adler, D.A. et al. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc. Natl. Acad. Sci. USA 94, 9244–9248 (1997).

    CAS  Article  PubMed Central  Google Scholar 

  7. 7

    FitzPatrick, D.R. et al. Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249–3256 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  8. 8

    Saran, N.G., Pletcher, M.T., Natale, J.E., Cheng, Y. & Reeves, R.H. Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum. Mol. Genet. 12, 2013–2019 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  9. 9

    Amano, K. et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum. Mol. Genet. 13, 1333–1340 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  10. 10

    Zhou, X. et al. Identification of discrete chromosomal deletion by binary recursive partitioning of microarray differential expression data. J. Med. Genet. 42, 416–419 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  11. 11

    Gartler, S.M. & Andina, R.J. Mammalian X-chromosome inactivation. Adv. Hum. Genet. 7, 99–140 (1976).

    CAS  Article  Google Scholar 

  12. 12

    Cheng, M.K. & Disteche, C.M. Silence of the fathers: early X inactivation. Bioessays 26, 821–824 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  13. 13

    Gartler, S.M., Liskay, R.M., Campbell, B.K., Sparkes, R. & Gant, N. Evidence for two functional X chromosomes in human oocytes. Cell Differ. 1, 215–218 (1972).

    CAS  Article  Google Scholar 

  14. 14

    McMahon, A., Fosten, M. & Monk, M. Random X-chromosome inactivation in female primordial germ cells in the mouse. J. Embryol. Exp. Morphol. 64, 251–258 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Monesi, V. Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 17, 11–21 (1965).

    CAS  Article  Google Scholar 

  16. 16

    Turner, J.M. et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37, 41–47 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  17. 17

    Huynh, K.D. & Lee, J.T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  22. 22

    Pritchard, C.C., Hsu, L., Delrow, J. & Nelson, P.S. Project normal: defining normal variance in mouse gene expression. Proc. Natl. Acad. Sci. USA 98, 13266–13271 (2001).

    CAS  Article  PubMed Central  Google Scholar 

  23. 23

    Walker, J.R. et al. Applications of a rat multiple tissue gene expression data set. Genome Res. 14, 742–749 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  24. 24

    Wang, J. et al. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol. 5, R69 (2004).

    Article  PubMed Central  Google Scholar 

  25. 25

    Rinn, J.L. et al. Major molecular differences between mammalian sexes are involved in drug metabolism and renal function. Dev. Cell 6, 791–800 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  26. 26

    Welle, S., Brooks, A.I., Delehanty, J.M., Needler, N. & Thornton, C.A. Gene expression profile of aging in human muscle. Physiol. Genomics 14, 149–159 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  27. 27

    Carrel, L. & Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  28. 28

    Disteche, C.M., Filippova, G.N. & Tsuchiya, K.D. Escape from X inactivation. Cytogenet. Genome Res. 99, 36–43 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  29. 29

    Uddin, M. et al. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc. Natl. Acad. Sci. USA 101, 2957–2962 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  30. 30

    McCarrey, J.R., Dilworth, D.D. & Sharp, R.M. Semiquantitative analysis of X-linked gene expression during spermatogenesis in the mouse: ethidium-bromide staining of RT-PCR products. Genet. Anal. Tech. Appl. 9, 117–123 (1992).

    CAS  Article  PubMed Central  Google Scholar 

  31. 31

    Hendriksen, P.J. et al. Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev. Biol. 170, 730–733 (1995).

    CAS  Article  PubMed Central  Google Scholar 

  32. 32

    Odorisio, T., Mahadevaiah, S.K., McCarrey, J.R. & Burgoyne, P.S. Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes. Dev. Biol. 180, 336–343 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  33. 33

    Khalil, A.M., Boyar, F.Z. & Driscoll, D.J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc. Natl. Acad. Sci. USA 101, 16583–16587 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  34. 34

    Malkov, M., Fisher, Y. & Don, J. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol. Reprod. 59, 84–92 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Schultz, N., Hamra, F.K. & Garbers, D.L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl. Acad. Sci. USA 100, 12201–12206 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  36. 36

    Schlecht, U. et al. Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility. Mol. Biol. Cell 15, 1031–1043 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  37. 37

    Hamra, F.K. et al. Defining the spermatogonial stem cell. Dev. Biol. 269, 393–410 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Khil, P.P., Smirnova, N.A., Romanienko, P.J. & Camerini-Otero, R.D. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Genet. 36, 642–646 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Hamatani, T. et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Wang, Q.T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  41. 41

    Zeng, F., Baldwin, D.A. & Schultz, R.M. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  42. 42

    Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. (in the press).

  43. 43

    Akhtar, A. Dosage compensation: an intertwined world of RNA and chromatin remodelling. Curr. Opin. Genet. Dev. 13, 161–169 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  44. 44

    Zheng, P. et al. Expression of genes encoding chromatin regulatory factors in developing rhesus monkey oocytes and preimplantation stage embryos: possible roles in genome activation. Biol. Reprod. 70, 1419–1427 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  45. 45

    Migeon, B.R. et al. Differential expression of steroid sulphatase locus on active and inactive human X chromosome. Nature 299, 838–840 (1982).

    CAS  Article  PubMed Central  Google Scholar 

  46. 46

    Zechner, U. et al. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet. 17, 697–701 (2001).

    CAS  Article  PubMed Central  Google Scholar 

  47. 47

    Ropers, H.H. & Hamel, B.C. X-linked mental retardation. Nat. Rev. Genet. 6, 46–57 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  48. 48

    Birchler, J.A., Riddle, N.C., Auger, D.L. & Veitia, R.A. Dosage balance in gene regulation: biological implications. Trends Genet. 21, 219–226 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  49. 49

    Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996).

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (NIH). We thank J. Birchler (University of Missouri), B. Oliver (National Institute of Diabetes & Digestive & Kidney Diseases, NIH) and M. Cheng (University of Washington), for helpful discussions. We thank C. Pritchard, I. Coleman and P. Nelson (Fred Hutchinson Cancer Research Center); J. Hogenesch, T. Wilshire and J. Walker (Genomics Institute of the Novartis Research Foundation); G. Martin and B. Cool (Department of Pathology, University of Washington); C. Bondy (National Institute of Child Health, NIH); M. Ko (National Institute of Aging, NIH); P. Khaitovich (Max-Planck-Institute for Evolutionary Anthropology, Leipzig); R. Bumgarner and the staff at Array Expression Database (http://www.ebi.ac.uk/arrayexpress/) for providing data for these analyses. We thank the Locke Computer Center and the Department of Biostatistics (University of Washington) for help with the statistical analysis, L. McKitrick and H. Vendettuoli, for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christine M Disteche.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Repression of the X chromosome during testis development. (PDF 275 kb)

Supplementary Table 1

Array types and characteristics. (PDF 60 kb)

Supplementary Table 2

X:autosome expression ratios. (PDF 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, D., Disteche, C. Dosage compensation of the active X chromosome in mammals. Nat Genet 38, 47–53 (2006). https://doi.org/10.1038/ng1705

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing