Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription

Abstract

Drosophila melanogaster heterochromatin protein 1 (HP1a or HP1)1 is believed to be involved in active transcription, transcriptional gene silencing and the formation of heterochromatin2,3,4,5,6,7. But little is known about the function of HP1 during development. Using a Gal4-induced RNA interference system, we showed that conditional depletion of HP1 in transgenic flies resulted in preferential lethality in male flies. Cytological analysis of mitotic chromosomes showed that HP1 depletion caused sex-biased chromosomal defects, including telomere fusions. The global levels of specific histone modifications, particularly the hallmarks of active chromatin, were preferentially increased in males as well. Expression analysis showed that approximately twice as many genes were specifically regulated by HP1 in males than in females. Furthermore, HP1-regulated genes showed greater enrichment for HP1 binding in males. Taken together, these results indicate that HP1 modulates chromosomal integrity, histone modifications and transcription in a sex-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of HP1 causes growth defects and apoptosis in transgenic flies.
Figure 2: Depletion of HP1 causes defective mitotic chromosomes to different extents in males and females.
Figure 3: HP1 regulates the dynamics of histone modification and gene transcription sex-specifically.
Figure 4: A subset of genes specifically affected in males shows male-specific enhanced HP1 binding.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

Gene Expression Omnibus

References

  1. James, T.C. et al. Distribution patterns of HP1, a heterochromatin-associated nonhistonechromosomal protein of Drosophila. Eur. J. Cell Biol. 50, 170–180 (1989).

    CAS  PubMed  Google Scholar 

  2. Eissenberg, J.C. et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87, 9923–9927 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Grewal, S.I. & Elgin, S.C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Piacentini, L., Fanti, L., Berloco, M., Perrini, B. & Pimpinelli, S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J. Cell Biol. 161, 707–714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cryderman, D.E. et al. Role of Drosophila HP1 in euchromatic gene expression. Dev. Dyn. 232, 767–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Giordano, E., Rendina, R., Peluso, I. & Furia, M. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Raftery, L.A., Sanicola, M., Blackman, R.K. & Gelbart, W.M. The relationship of decapentaplegic and engrailed expression in Drosophila imaginal disks: do these genes mark the anterior-posterior compartment boundary? Development 113, 27–33 (1991).

    CAS  PubMed  Google Scholar 

  11. Hauck, B., Gehring, W.J. & Walldorf, U. Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila. Proc. Natl. Acad. Sci. USA 96, 564–569 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neufeld, T.P., de la Cruz, A.F., Johnston, L.A. & Edgar, B.A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Stennicke, H.R., Ryan, C.A. & Salvesen, G.S. Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem. Sci. 27, 94–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Th'ng, J.P. Histone modifications and apoptosis: cause or consequence? Biochem. Cell Biol. 79, 305–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akhtar, A. & Becker, P.B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Christensen, T.W. & Tye, B.K. Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol. Biol. Cell 14, 2206–2215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergmann, A., Yang, A.Y. & Srivastava, M. Regulators of IAP function: coming to grips with the grim reaper. Curr. Opin. Cell Biol. 15, 717–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kelley, R.L., Wang, J., Bell, L. & Kuroda, M.I. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387, 195–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Perrini, B. et al. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol. Cell 15, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. De Lucia, F., Ni, J.Q., Vaillant, C. & Sun, F.L. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res. 33, 2852–2858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delattre, M., Spierer, A., Jaquet, Y. & Spierer, P. Increased expression of Drosophila Su(var)3–7 triggers Su(var)3–9-dependent heterochromatin formation. J. Cell Sci. 117, 6239–6247 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Bongiorni, S., Mazzuoli, M., Masci, S. & Prantera, G. Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128, 3809–3817 (2001).

    CAS  PubMed  Google Scholar 

  29. Shaffer, C.D., Wuller, J.M. & Elgin, S.C. Raising large quantities of Drosophila for biochemical experiments. Methods Cell Biol. 44, 99–108 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, F.L. et al. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc. Natl. Acad. Sci. USA 97, 5340–5345 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.C.R. Elgin for providing us with monoclonal (C1A9) and polyclonal (rabbit #192) antibodies against D. melanogaster HP1; G. Reuter for providing antibody against D. melanogaster Su(var)3-9; E. Giordano for sharing unpublished information; G. Rueter for providing antibody against D. melanogaster Su(var)3-9; D. Schübeler and A. Peters for their critical reading of the manuscript; and S. Oakeley and H. Rothnie for their help on nomenclature. This work was supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Lin Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Western and immunofluorescent detection of histone modifications in wild type and HP1-depleted larval cells. (PDF 287 kb)

Supplementary Fig. 2

The specificity of HP1 antibodies is determined by western and immunofluorescence. (PDF 178 kb)

Supplementary Table 1

Genes affected both in males and females. (PDF 232 kb)

Supplementary Table 2

Genes specifically affected in males. (PDF 361 kb)

Supplementary Table 3

Genes specifically affected in females. (PDF 231 kb)

Supplementary Table 4

Primers used to perform ChIP and RT-PCR. (PDF 27 kb)

Supplementary Methods (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, LP., Ni, JQ., Shi, YD. et al. Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet 37, 1361–1366 (2005). https://doi.org/10.1038/ng1662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing