Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice

Abstract

Hemoglobin deficit (hbd) mice carry a spontaneous mutation that impairs erythroid iron assimilation but does not cause other defects. Normal delivery of iron to developing erythroid precursors is highly dependent on the transferrin cycle. Through genetic mapping and complementation experiments, we show that the hbd mutation is an in-frame deletion of a conserved exon of the mouse gene Sec15l1, encoding one of two Sec15 proteins implicated in the mammalian exocyst complex. Sec15l1 is linked to the transferrin cycle through its interaction with Rab11, a GTPase involved in vesicular trafficking. We propose that inactivation of Sec15l1 alters recycling of transferrin cycle endosomes and increases the release of transferrin receptor exocytic vesicles. This in turn decreases erythroid iron uptake. Determining the molecular basis of the hbd phenotype provides new insight into the intricate mechanisms necessary for normal erythroid iron uptake and the function of a mammalian exocyst protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of hbd mice.
Figure 2: Analysis of Sec15l1 and Sec15l2 expression.
Figure 3: Insertional mutagenesis of Sec15l1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hentze, M.W., Muckenthaler, M.U. & Andrews, N.C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).

    Article  CAS  Google Scholar 

  2. Trenor, C.C. III, Campagna, D.R., Sellers, V.M., Andrews, N.C. & Fleming, M.D. The molecular defect in hypotransferrinemic mice. Blood 96, 1113–1118 (2000).

    CAS  PubMed  Google Scholar 

  3. Levy, J.E., Jin, O., Fujiwara, Y., Kuo, F. & Andrews, N.C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 21, 396–399 (1999).

    Article  CAS  Google Scholar 

  4. Bannerman, R.M., Garrick, L.M., Rusnak-Smalley, P., Hoke, J.E. & Edwards, J.A. Hemoglobin deficit: an inherited hypochromic anemia in the mouse. Proc. Soc. Exp. Biol. Med. 182, 52–57 (1986).

    Article  CAS  Google Scholar 

  5. Garrick, L.M., Edwards, J.A., Hoke, J.E. & Bannerman, R.M. Diminished acquisition of iron by reticulocytes from mice with hemoglobin deficit. Exp. Hematol. 15, 671–675 (1987).

    CAS  PubMed  Google Scholar 

  6. Bloom, M.L., Simon-Stoos, K.L. & Mabon, M.E. The hemoglobin-deficit mutation is located on mouse chromosome 19. Mamm. Genome 9, 666–667 (1998).

    Article  CAS  Google Scholar 

  7. Andrews, N.C. Iron homeostasis: insights from genetics and animal models. Nat. Rev. Genet. 1, 208–217 (2000).

    Article  CAS  Google Scholar 

  8. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  9. Lipschutz, J.H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell 11, 4259–4275 (2000).

    Article  CAS  Google Scholar 

  10. Yeaman, C., Grindstaff, K.K. & Nelson, W.J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).

    Article  CAS  Google Scholar 

  11. Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A. & Rowe, T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem. 279, 43027–43034 (2004).

    Article  CAS  Google Scholar 

  12. Friedrich, G.A., Hildebrand, J.D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997).

    Article  CAS  Google Scholar 

  13. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    Article  CAS  Google Scholar 

  14. Andrews, H.K., Zhang, Y.Q., Trotta, N. & Broadie, K. Drosophila Sec10 is required for hormone secretion but not general exocytosis or neurotransmission. Traffic 3, 906–921 (2002).

    Article  CAS  Google Scholar 

  15. Mehta, S.Q. et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46, 219–232 (2005).

    Article  CAS  Google Scholar 

  16. Brymora, A., Valova, V.A., Larsen, M.R., Roufogalis, B.D. & Robinson, P.J. The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J. Biol. Chem. 276, 29792–29797 (2001).

    Article  CAS  Google Scholar 

  17. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  Google Scholar 

  18. Ren, M. et al. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Natl. Acad. Sci. USA 95, 6187–6192 (1998).

    Article  CAS  Google Scholar 

  19. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R.G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  Google Scholar 

  20. Savina, A., Fader, C.M., Damiani, M.T. & Colombo, M.I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  Google Scholar 

  21. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  Google Scholar 

  22. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  PubMed  Google Scholar 

  23. Johnstone, R.M., Mathew, A., Mason, A.B. & Teng, K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell. Physiol. 147, 27–36 (1991).

    Article  CAS  Google Scholar 

  24. Savina, A., Vidal, M. & Colombo, M.I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115, 2505–2515 (2002).

    CAS  PubMed  Google Scholar 

  25. Scheufler, H. Eine weitere Mutante der Hausmaus mit Anamie (hbd). Z. Versuchstierkd. 11, 348–353 (1969).

    CAS  PubMed  Google Scholar 

  26. Torrance, J.D. & Bothwell, T.H. Tissue Iron Stores (Churchill Livingstone, New York, 1980).

    Google Scholar 

  27. Chen, J. et al. Constitutively activated FGFR3 mutants signal through PLC{gamma}-dependent and -independent pathways for hematopoietic transformation. Blood 106, 328–337 (2005).

    Article  CAS  Google Scholar 

  28. Schwaller, J. et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell 6, 693–704 (2000).

    Article  CAS  Google Scholar 

  29. Zhang, J. & Lodish, H.F. Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood 104, 1679–1687 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Roy and T. Holm for sharing unpublished data; A. Donovan, J. Glaven, D. Wrighting and R. Ohgami discussing experiments and commenting on the manuscript; G. Gilliland for assistance with BMT experiments; and Y. Fujiwara for blastocyst injections. This work was supported by a March of Dimes research grant and a grant from the US National Institutes of Health to N.C.A. NCA is also an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy C Andrews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Oligonucleotides used as PCR primers for analysis of Sec15l1. (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Jin, O., Bennett, C. et al. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37, 1270–1273 (2005). https://doi.org/10.1038/ng1659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing