A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility

Abstract

Multiple sclerosis is a common disease with proven heritability, but, despite large-scale attempts, no underlying risk genes have been identified. Traditional linkage scans have so far identified only one risk haplotype for multiple sclerosis (at HLA on chromosome 6), which explains only a fraction of the increased risk to siblings. Association scans such as admixture mapping have much more power, in principle, to find the weak factors that must explain most of the disease risk. We describe here the first high-powered admixture scan, focusing on 605 African American cases and 1,043 African American controls, and report a locus on chromosome 1 that is significantly associated with multiple sclerosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Results of the genome-wide admixture scan (run 3 in Table 1).
Figure 2: The strongest peak of association spans the centromere of chromosome 1.
Figure 3: The 95% credible intervals for increased risk due to European ancestry at the chromosome 1 locus, for all African Americans (n = 605), all Afro-Caribbeans (n = 143) and both cohorts together (n = 748).

References

  1. 1

    Rife, D.C. Populations of hybrid origin as source material for the detection of linkage. Am. J. Hum. Genet. 6, 26–33 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Chakraborty, R. & Weiss, K.M. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc. Natl. Acad. Sci. USA 85, 9119–9123 (1988).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Stephens, J.C., Briscoe, D. & O'Brien, S.J. Mapping by admixture linkage disequilibrium in human populations: Limits and guidelines. Am. J. Hum. Genet. 55, 809–824 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Briscoe, D., Stephens, J.C. & O'Brien, S.J. Linkage disequilibrium in admixed populations: Applications in gene mapping. J. Hered. 85, 59–63 (1994).

    CAS  PubMed  Google Scholar 

  5. 5

    McKeigue, P.M. Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am. J. Hum. Genet. 60, 188–196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    McKeigue, P.M. Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in populations, by conditioning on parental admixture. Am. J. Hum. Genet. 63, 241–251 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Smith, M.W. et al. A high-density admixture map for disease gene discovery in African Americans. Am. J. Hum. Genet. 74, 1001–1013 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74, 979–1000 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hoggart, C.J., Shriver, M.D., Kittles, R.A., Clayton, D.G. & McKeigue, P.M. Design and analysis of admixture mapping studies. Am. J. Hum. Genet. 74, 965–978 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Montana, G. & Pritchard, J.K. Statistical tests for admixture mapping with case-control and cases-only data. Am. J. Hum. Genet. 75, 771–789 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Zhu, X. et al. Admixture mapping for hypertension loci with genome-scan markers. Nat. Genet. 37, 177–181 (2005).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Carlson, C.S. et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat. Genet. 33, 518–521 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Reich, D. & Patterson, N. Will admixture mapping work to find disease genes? Phil. Trans. R. Soc. Lond. B 360, 1605–1607 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Kurtzke, J.F., Beebe, G.W. & Norman, J.E. Jr. Epidemiology of multiple sclerosis in U.S. veterans: 1. Race, sex, and geographic distribution. Neurology 29, 1228–1235 (1979).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Wallin, M.T., Page, W.F. & Kurtzke, J.F. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol. 55, 65–71 (2004).

    Article  PubMed  Google Scholar 

  16. 16

    The Transatlantic Multiple Sclerosis Genetics Cooperative. A meta-analysis of genomic screens in multiple sclerosis. A meta-analysis of genomic screens in multiple sclerosis. Mult. Scler. 7, 3–11 (2001).

  17. 17

    Oksenberg, J.R. et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74, 160–167 (2004).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Hoggart, C.J. et al. Control of confounding of genetic associations in stratified populations. Am. J. Hum. Genet. 72, 1492–1504 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Quelvennec, E. et al. Genetic and functional studies in multiple sclerosis patients from Martinique attest for a specific and direct role of the HLA-DR locus in the syndrome. Tissue Antigens 61, 166–171 (2003).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Kelly, M.A. et al. An investigation of HLA-encoded genetic susceptibility to multiple sclerosis in subjects of Asian Indian and Afro-Caribbean ethnic origin. Tissue Antigens 45, 197–202 (1995).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Lauer, K. The risk of multiple sclerosis in the U.S.A. in relation to sociogeographic features: a factor-analytic study. J. Clin. Epidemiol. 47, 43–48 (1994).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am. J. Hum. Genet. 77, 454–467 (2005).

  23. 23

    Cree, B.A. et al. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology 63, 2039–2045 (2004).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    McDonald, W.I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 50, 121–127 (2001).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Poser, C.M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Hosono, S. et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. 13, 954–964 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Fan, J.B. et al. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68, 69–78 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Tang, K. et al. Chip-based genotyping by mass spectrometry. Proc. Natl. Acad. Sci. USA 96, 10016–10020 (1999).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995).

    CAS  PubMed  Google Scholar 

  30. 30

    Kong, X. et al. A combined linkage-physical map of the human genome. Am. J. Hum. Genet. 75, 1143–1148 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the individuals with multiple sclerosis, their families and friends and others for permission to use their DNA in these studies; M. Williams for his role in building the collection of samples from African Americans; B. Henderson and S. Ingles for permission to use data from the prostate cancer study; D. Goldstein for frequency information from the Italian and Norwegian samples; and D. Goldstein and E. Lander for providing comments throughout the project. This work was supported by grants to D.R. from the Wadsworth Foundation and the US National Institute of Neurological Disorders and Stroke; to D.A.H. from the National Multiple Sclerosis Society; to J.R.O. from the US National Institute of Neurological Disorders and Stroke and the National Multiple Sclerosis Society; and to S.L.H. from the Nancy David and Montel Williams Foundations. D.R. is the recipient of a Burroughs-Wellcome Career Development Award in the Biomedical Sciences; B.A.C.C. is a Sylvia Lawry fellow of the National Multiple Sclerosis Society; N.P. has a US National Institutes of Health career transition award; D.A.H. has a US National Institute of Neurological Disorders and Stroke Javits Investigator Award; and P.L.D.J. is the William C Fowler scholar for MS Research and is supported by US National Institute of Neurological Disorders and Stroke grant and the Clinical Investigator Training program: Harvard-MIT Health Sciences and Technology–Beth Israel Deaconess Medical Center, in collaboration with Pfizer, Inc.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Results for the 1,166 SNPs used in the main MCMC analysis (analysis from Run 3). (XLS 435 kb)

Supplementary Table 2

Proof that case-control statistic is normally distributed. (PDF 44 kb)

Supplementary Table 3

Admixture statistics for the populations under study. (PDF 48 kb)

Supplementary Table 4

389 SNPs dropped from main analysis based on the linkage disequilibrium criteria. (XLS 77 kb)

Supplementary Table 5

Results by sample (analysis from run #10). (XLS 435 kb)

Supplementary Methods (PDF 127 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reich, D., Patterson, N., Jager, P. et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 37, 1113–1118 (2005). https://doi.org/10.1038/ng1646

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing