Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis

Abstract

The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development1. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/− embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was 15 times high in elderly Plk4+/− mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/− regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/− mice. Loss of heterozygosity occurs frequently (60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosomal instability and carcinogenesis in Plk4+/− cells and mice.
Figure 2: Mitotic failure in regenerating Plk4+/− hepatocytes.
Figure 3: Molecular markers of cell-cycle progression in regenerating livers of Plk4+/+ and Plk4+/− mice.
Figure 4: Plk4 haploinsufficiency in mice and 4q28 LOH in human hepatoma.

Similar content being viewed by others

References

  1. Hudson, J.W. et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441–446 (2001).

    Article  CAS  Google Scholar 

  2. Elledge, S.J. Cell cycle checkpoints: Preventing an identity crisis. Science 274, 1664–1671 (1996).

    Article  CAS  Google Scholar 

  3. Okada, H. & Mak, T.W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592–603 (2004).

    Article  CAS  Google Scholar 

  4. Michel, L.S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  Google Scholar 

  5. Philipp-Staheli, J., Payne, S.R. & Kemp, C.J. p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264, 148–168 (2001).

    Article  CAS  Google Scholar 

  6. Dai, W. et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res. 64, 440–445 (2004).

    Article  CAS  Google Scholar 

  7. Babu, J.R. et al. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol. 160, 341–353 (2003).

    Article  CAS  Google Scholar 

  8. Tsai, K.Y. et al. ARF mutation accelerates pituitary tumor development in Rb+/− mice. Proc. Natl. Acad. Sci. USA 99, 16865–16870 (2002).

    Article  CAS  Google Scholar 

  9. Jackson, R.J. et al. p21Cip1 nullizygosity increases tumor metastasis in irradiated mice. Cancer Res. 63, 3021–3025 (2003).

    CAS  PubMed  Google Scholar 

  10. Bai, F., Pei, X.H., Godfrey, V.L. & Xiong, Y. Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol. Cell. Biol. 23, 1269–1277 (2003).

    Article  CAS  Google Scholar 

  11. Sherr, C.J. Principles of tumor suppression. Cell 116, 235–246 (2004).

    Article  CAS  Google Scholar 

  12. Barr, F.A., Sillje, H.H. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  13. Blagden, S.P. & Glover, D.M. Polar expeditions–provisioning the centrosome for mitosis. Nat. Cell Biol. 5, 505–511 (2003).

    Article  CAS  Google Scholar 

  14. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  Google Scholar 

  15. Fode, C., Binkert, C. & Dennis, J.W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell. Biol. 16, 4665–4672 (1996).

    Article  CAS  Google Scholar 

  16. Hammond, C., Jeffers, L., Carr, B.I. & Simon, D. Multiple genetic alterations, 4q28, a new suppressor region, and potential gender differences in human hepatocellular carcinoma. Hepatology 29, 1479–1485 (1999).

    Article  CAS  Google Scholar 

  17. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48–53 (2003).

    Article  CAS  Google Scholar 

  18. Black, D., Lyman, S., Heider, T.R. & Behrns, K.E. Molecular and cellular features of hepatic regeneration. J. Surg. Res. 117, 306–315 (2004).

    Article  CAS  Google Scholar 

  19. Hixon, M.L. et al. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J. Clin. Invest. 106, 1011–1020 (2000).

    Article  CAS  Google Scholar 

  20. Tarapore, P. & Fukasawa, K. Loss of p53 and centrosome hyperamplification. Oncogene 21, 6234–6240 (2002).

    Article  CAS  Google Scholar 

  21. Seike, M. et al. The promoter region of the human BUBR1 gene and its expression analysis in lung cancer. Lung Cancer 38, 229–234 (2002).

    Article  Google Scholar 

  22. Ferrell, J.E., Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  23. Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25, 542–553 (2003).

    Article  CAS  Google Scholar 

  24. Carroll, P.E. et al. Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18, 1935–1944 (1999).

    Article  CAS  Google Scholar 

  25. Swallow, C. et al. Sak/Plk4 and mitotic fidelity. Oncogene 24, 306–312 (2005).

    Article  CAS  Google Scholar 

  26. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  Google Scholar 

  27. Anzola, M. Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J. Viral Hepat. 11, 383–393 (2004).

    Article  CAS  Google Scholar 

  28. Weinberg, R.A. The cat and mouse games that genes, viruses, and cells play. Cell 88, 573–575 (1997).

    Article  CAS  Google Scholar 

  29. Bluteau, O. et al. Specific association between alcohol intake, high grade of differentiation and 4q34-q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping. Oncogene 21, 1225–1232 (2002).

    Article  CAS  Google Scholar 

  30. Yeh, S.H. et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology 121, 699–709 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. DiNicola and A. Sproule for technical assistance and S. Gallinger, I. McGilvray, L. Osborne, S. Scherer, R. Chetty, C McKerlie and T. Pawson for discussions. This work was supported by grants from the National Cancer Institute of Canada (J.W.D.) and the National Colorectal Cancer Campaign (C.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W Dennis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Slow growth, mitotic irregularities, and micronuclei in Sak+/− MEFs. (PDF 185 kb)

Supplementary Table 1

PCR primers and probes. (PDF 31 kb)

Supplementary Methods (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, M., Rosario, C., Hudson, J. et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37, 883–888 (2005). https://doi.org/10.1038/ng1605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing