Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice

Abstract

Most cancers have multiple chromosomal rearrangements; the molecular mechanisms that generate them remain largely unknown. Mice carrying a heterozygous missense change in one of the DNA-binding domains of Rpa1 develop lymphoid tumors, and their homozygous littermates succumb to early embryonic lethality. Array comparative genomic hybridization of the tumors identified large-scale chromosomal changes as well as segmental gains and losses. The Rpa1 mutation resulted in defects in DNA double-strand break repair and precipitated chromosomal breaks as well as aneuploidy in primary heterozygous mutant mouse embryonic fibroblasts. The equivalent mutation in yeast is hypomorphic and semidominant and enhanced the formation of gross chromosomal rearrangements in multiple genetic backgrounds. These results indicate that Rpa1 functions in DNA metabolism are essential for the maintenance of chromosomal stability and tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Rpa1689C mutant mice.
Figure 2: Phenotypes of Rpa1 mutant mice.
Figure 3: Chromosome analyses of tumors and MEFs in Rpa1689C/+ mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    Article  CAS  Google Scholar 

  2. Chen, C., Umezu, K. & Kolodner, R.D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).

    Article  CAS  Google Scholar 

  3. Chen, C. & Kolodner, R.D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23, 81–85 (1999).

    Article  CAS  Google Scholar 

  4. Soustelle, C., Vedel, M., Kolodner, R. & Nicolas, A. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae . Genetics 161, 535–547 (2002).

    CAS  Google Scholar 

  5. Kim, H.S. & Brill, S.J. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae . Mol. Cell. Biol. 21, 3725–3737 (2001).

    Article  CAS  Google Scholar 

  6. Lee, S.E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  Google Scholar 

  7. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  8. Umezu, K., Sugawara, N., Chen, C., Haber, J.E. & Kolodner, R.D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148, 989–1005 (1998).

    CAS  Google Scholar 

  9. Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    Article  CAS  Google Scholar 

  10. Tsuzuki, T. et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93, 6236–6240 (1996).

    Article  CAS  Google Scholar 

  11. Symington, L.S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002).

    Article  CAS  Google Scholar 

  12. Cory, S., Vaux, D.L., Strasser, A., Harris, A.W. & Adams, J.M. Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res. 59 Suppl, 1685s–1692s (1999).

    CAS  Google Scholar 

  13. Karlsson, A. et al. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc. Natl. Acad. Sci. USA 100, 9974–9979 (2003).

    Article  CAS  Google Scholar 

  14. Metz, T., Harris, A.W. & Adams, J.M. Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell 82, 29–36 (1995).

    Article  CAS  Google Scholar 

  15. van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206 (2001).

    Article  CAS  Google Scholar 

  16. Flores-Rozas, H. & Kolodner, R.D. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem. Sci. 25, 196–200 (2000).

    Article  CAS  Google Scholar 

  17. Debrauwere, H., Loeillet, S., Lin, W., Lopes, J. & Nicolas, A. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98, 8263–8269 (2001).

    Article  CAS  Google Scholar 

  18. Myung, K. & Kolodner, R.D. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 99, 4500–4507 (2002).

    Article  CAS  Google Scholar 

  19. Myung, K., Datta, A. & Kolodner, R.D. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae . Cell 104, 397–408 (2001).

    Article  CAS  Google Scholar 

  20. Pennaneach, V. & Kolodner, R.D. Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat. Genet. 36, 612–617 (2004).

    Article  CAS  Google Scholar 

  21. Myung, K., Chen, C. & Kolodner, R.D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae . Nature 411, 1073–1076 (2001).

    Article  CAS  Google Scholar 

  22. Klein, H.L. Spontaneous chromosome loss in Saccharomyces cerevisiae is suppressed by DNA damage checkpoint functions. Genetics 159, 1501–1509 (2001).

    CAS  Google Scholar 

  23. Umbricht, C.B. et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20, 249–257 (1994).

    Article  CAS  Google Scholar 

  24. Mackay, J., Steel, C.M., Elder, P.A., Forrest, A.P. & Evans, H.J. Allele loss on short arm of chromosome 17 in breast cancers. Lancet 2, 1384–1385 (1988).

    Article  CAS  Google Scholar 

  25. Baker, S.J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    Article  CAS  Google Scholar 

  26. Devilee, P. et al. At least four different chromosomal regions are involved in loss of heterozygosity in human breast carcinoma. Genomics 5, 554–560 (1989).

    Article  CAS  Google Scholar 

  27. Coles, C. et al. Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet 336, 761–763 (1990).

    Article  CAS  Google Scholar 

  28. Chen, L.C. et al. Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. Proc. Natl. Acad. Sci. USA 88, 3847–3851 (1991).

    Article  CAS  Google Scholar 

  29. Tharapel, S.A. & Kadandale, J.S. Primed in situ labeling (PRINS) for evaluation of gene deletions in cancer. Am. J. Med. Genet. 107, 123–126 (2002).

    Article  Google Scholar 

  30. Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Hou, Jr. and B. Jin for technical assistance and S. Brill for providing antibodies. This work was supported by grants from the US National Institutes of Health (to R.K., R.D.K. and W.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard D Kolodner or Winfried Edelmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Molecular dynamics suggests that the L221P mutation disrupts the DNA-binding interface of the oligonucleotide binding (OB) domain 1 of human RPA1. (PDF 5784 kb)

Supplementary Fig. 2

Laser capture microdissection (LCM) and loss of heterozygosity (LOH) analysis. (PDF 379 kb)

Supplementary Fig. 3

Partial dominance of plasmid borne rfa1-L221P alleles for sensitivity to constitutive expression of HO endonuclease. (PDF 7308 kb)

Supplementary Table 1

Summary of chromosomal aberrations in lymphomas of Rpa1L230P/+ mice. (PDF 60 kb)

Supplementary Table 2

Karyotypic aberrations in Rpa1L230P/+ MEFs. (PDF 51 kb)

Supplementary Table 3

Partial dominance of plasmid-borne rfa1-L221P alleles in MMS sensitivity. (PDF 64 kb)

Supplementary Table 4

Partial dominance of plasmid-borne rfa1-L221P alleles in HU sensitivity. (PDF 65 kb)

Supplementary Table 5

Partial dominance of plasmid-borne rfa1-L221P alleles in UV sensitivity. (PDF 719 kb)

Supplementary Methods (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Putnam, C., Kane, M. et al. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37, 750–755 (2005). https://doi.org/10.1038/ng1587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing