Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A genome-wide scalable SNP genotyping assay using microarray technology


Oligonucleotide probe arrays have enabled massively parallel analysis of gene expression levels from a single cDNA sample. Application of microarray technology to analyzing genomic DNA has been stymied by the sequence complexity of the entire human genome. A robust, single base–resolution direct genomic assay would extend the reach of microarray technology. We developed an array-based whole-genome genotyping assay that does not require PCR and enables effectively unlimited multiplexing. The assay achieves a high signal-to-noise ratio by combining specific hybridization of picomolar concentrations of whole genome–amplified DNA to arrayed probes with allele-specific primer extension and signal amplification. As proof of principle, we genotyped several hundred previously characterized SNPs. The conversion rate, call rate and accuracy were comparable to those of high-performance PCR-based genotyping assays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: WGG on DNA arrays.
Figure 2: WGA representation.
Figure 3: WGG on Sentrix array matrix using the WGG feasibility array.
Figure 4: Genotyping of HapMap quality control SNPs.


  1. 1

    The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  2. 2

    Johnson, G.C. et al. Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233–237 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Judson, R., Salisbury, B., Schneider, J., Windemuth, A. & Stephens, J.C. How many SNPs does a genome–wide haplotype map require? Pharmacogenomics 3, 379–391 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Stephens, J.C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Kwok, P.Y. & Chen, X. Detection of single nucleotide polymorphisms. Curr. Issues Mol. Biol. 5, 43–60 (2003).

    CAS  PubMed  Google Scholar 

  8. 8

    Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Pollack, J.R. et al. Genome–wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Carvalho, B., Ouwerkerk, E., Meijer, G.A. & Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57, 644–646 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Borevitz, J.O. et al. Large-scale identification of single–feature polymorphisms in complex genomes. Genome Res. 13, 513–523 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Wu, D.Y., Nozari, G., Schold, M., Conner, B.J. & Wallace, R.B. Direct analysis of single nucleotide variation in human DNA and RNA using in situ dot hybridization. DNA 8, 135–142 (1989).

    CAS  Article  Google Scholar 

  15. 15

    Storhoff, J.J. et al. Diagnostic detection systems based on gold nanoparticle probes. in Biomedical Applications of Micro- and Nanoengineering Proc. SPIE vol. 4937 (ed. Nicolau, D.V.) 1–7 (SPIE, Bellingham, Washington, 2002).

    Google Scholar 

  16. 16

    Rao, K.V. et al. Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres. Nucleic Acids Res. 31, e66 (2003).

    Article  Google Scholar 

  17. 17

    Chen, Y., Shortreed, M.R., Peelen, D., Lu, M. & Smith, L.M. Surface amplification of invasive cleavage products. J. Am. Chem. Soc. 126, 3016–3017 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Lucito, R. et al. Genetic analysis using genomic representations. Proc. Natl. Acad. Sci. USA 95, 4487–4492 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Kennedy, G.C. et al. Large-scale genotyping of complex DNA. Nat. Biotechnol. 21, 1233–1237 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Matsuzaki, H. et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–425 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Fan, J.B. et al. Highly parallel SNP genotyping. Cold Spring Harbor Symposia on Quantitative Biology LXVIII, 69–78 (CSHL, Woodbury, New York, 2003).

    Google Scholar 

  23. 23

    Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Gunderson, K.L. et al. Decoding randomly ordered DNA arrays. Genome Res. 14, 870–877 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Wang, G. et al. DNA amplification method tolerant to sample degradation. Genome Res. 14, 2357–2366 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Bobrow, M.N., Harris, T.D., Shaughnessy, K.J. & Litt, G.J. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125, 279–285 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Hacker, G.W. High performance Nanogold-silver in situ hybridisation. Eur. J. Histochem. 42, 111–120 (1998).

    CAS  PubMed  Google Scholar 

  28. 28

    Shumaker, J.M., Metspalu, A. & Caskey, C.T. Mutation detection by solid phase primer extension. Hum. Mutat. 7, 346–354 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Gunderson, K.L. et al. Mutation detection by ligation to complete n-mer DNA arrays. Genome Res. 8, 1142–1153 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L. & Syvanen, A.C. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Pastinen, T. et al. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10, 1031–1042 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Erdogan, F., Kirchner, R., Mann, W., Ropers, H.H. & Nuber, U.A. Detection of mitochondrial single nucleotide polymorphisms using a primer elongation reaction on oligonucleotide microarrays. Nucleic Acids Res. 29, E36 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Consortium, T.I.H. The International HapMap Project. Nature 426, 789–796 (2003).

  34. 34

    Simpson, C.L. et al. MaGIC: a program to generate targeted marker sets for genome-wide association studies. Biotechniques 37, 996–999 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Di, X. et al. Dynamic model-based algorithms for screening and genotyping over 100K SNPs on oligonucleotide microarrays. Bioinformatics advance online publication, 19 January 2005 (10.1093/bioinformatics/bti275).

  36. 36

    Pinkel, D., Straume, T. & Gray, J.W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83, 2934–2938 (1986).

    CAS  Article  Google Scholar 

Download references


We thank our Illumina colleagues in manufacturing for providing oligos and arrays and L. Zhou for generating the nonpolymorphic control sequences used in assay development. This work was supported in part by a US National Institutes of Health National Cancer Institute grant to K.L.G.

Author information



Corresponding author

Correspondence to Kevin L Gunderson.

Ethics declarations

Competing interests

All authors are or were employees of Illumina, Inc. and may own stock or stock options in the company.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gunderson, K., Steemers, F., Lee, G. et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37, 549–554 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing