Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality

Abstract

The role of transcriptional activation in p53 function is highly controversial. To define this role in vivo, we generated a Trp53 knock-in construct encoding a protein carrying mutations of two residues that are crucial for transactivation (L25Q,W26S). Here we show that these mutations have selective effects on the biological functions of p53. Although its ability to activate various p53 target genes is largely compromised, the p53QS protein retains the ability to transactivate the gene Bax. The ability of the p53QS mutant protein to elicit a DNA damage–induced G1 cell cycle–arrest response is also partially impaired. p53QS has selective defects in its ability to induce apoptosis: it is completely unable to activate apoptosis in response to DNA damage, is partially unable to do so when subjected to serum deprivation and retains substantial apoptotic activity upon exposure to hypoxia. These findings suggest that p53 acts through distinct, stimulus-specific pathways to induce apoptosis. The importance of the biological activity of p53QS in vivo is underscored by our finding that expression of p53QS, which cannot bind mdm2, induces embryonic lethality. Taken together, these results suggest that p53 has different mechanisms of action depending on specific contextual cues, which may help to clarify the function of p53 in preventing cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of Trp53LSL-QS mice.
Figure 2: p53QS binds p53 response elements.
Figure 3: p53QS is impaired for transactivation.
Figure 4: p53QS has compromised cell-cycle checkpoint function.
Figure 5: p53QS is defective in inducing apoptosis in response to DNA damage.
Figure 6: p53QS has partial apoptotic activity upon serum deprivation.
Figure 7: p53QS has robust apoptotic, but not transactivation, activity under hypoxic conditions.

Similar content being viewed by others

References

  1. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  2. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  3. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  4. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  Google Scholar 

  5. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  6. Vousden, K.H. & Lu, X. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  7. Sabbatini, P., Lin, J., Levine, A.J. & White, E. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 9, 2184–2192 (1995).

    Article  CAS  Google Scholar 

  8. Attardi, L.D., Lowe, S.W., Brugarolas, J. & Jacks, T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15, 3702–3712 (1996).

    Article  Google Scholar 

  9. McCurrach, M.E., Connor, T.M., Knudson, C.M., Korsmeyer, S.J. & Lowe, S.W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94, 2345–2349 (1997).

    Article  CAS  Google Scholar 

  10. Ihrie, R.A. et al. Perp is a mediator of p53-dependent apoptosis in diverse cell types. Curr. Biol. 13, 1985–1990 (2003).

    Article  CAS  Google Scholar 

  11. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  Google Scholar 

  12. Shibue, T. et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 17, 2233–2238 (2003).

    Article  CAS  Google Scholar 

  13. Caelles, C., Helmberg, A. & Karin, M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220–223 (1994).

    Article  CAS  Google Scholar 

  14. Wagner, A.J., Kokontis, J.M. & Hay, N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8, 2817–2830 (1994).

    Article  CAS  Google Scholar 

  15. Chen, X., Ko, L.J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996).

    Article  CAS  Google Scholar 

  16. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. & Oren, M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  Google Scholar 

  17. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  Google Scholar 

  18. Dumont, P., Leu, J.I., Della Pietra, A.C. 3rd, George, D.L. & Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33, 357–365 (2003).

    Article  CAS  Google Scholar 

  19. Chipuk, J.E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  Google Scholar 

  20. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  21. Uesugi, M. & Verdine, G.L. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc. Natl. Acad. Sci. USA 96, 14801–14806 (1999).

    Article  CAS  Google Scholar 

  22. Montes de Oca Luna, R., Wagner, D.S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  Google Scholar 

  23. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  24. Ludwig, R.L., Bates, S. & Vousden, K.H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16, 4952–4960 (1996).

    Article  CAS  Google Scholar 

  25. Friedlander, P., Haupt, Y., Prives, C. & Oren, M. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol. Cell. Biol. 16, 4961–4971 (1996).

    Article  CAS  Google Scholar 

  26. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  27. Attardi, L.D., de Vries, A. & Jacks, T. Activation of the p53-dependent G1 checkpoint response in mouse embryo fibroblasts depends on the specific DNA damage inducer. Oncogene 23, 973–980 (2004).

    Article  CAS  Google Scholar 

  28. Lowe, S.W. & Ruley, H.E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7, 535–545 (1993).

    Article  CAS  Google Scholar 

  29. Soengas, M.S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  Google Scholar 

  30. Hammond, E.M., Denko, N.C., Dorie, M.J., Abraham, R.T. & Giaccia, A.J. Hypoxia links ATR and p53 through replication arrest. Mol. Cell. Biol. 22, 1834–1843 (2002).

    Article  CAS  Google Scholar 

  31. Chao, C. et al. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 19, 4967–4975 (2000).

    Article  CAS  Google Scholar 

  32. Zhu, J., Zhou, W., Jiang, J. & Chen, X. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J. Biol. Chem. 273, 13030–13036 (1998).

    Article  CAS  Google Scholar 

  33. Venot, C., Maratrat, M., Sierra, V., Conseiller, E. & Debussche, L. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18, 2405–2410 (1999).

    Article  CAS  Google Scholar 

  34. Hemann, M.T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl. Acad. Sci. USA 101, 9333–9338 (2004).

    Article  CAS  Google Scholar 

  35. Koumenis, C. et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol. Cell. Biol. 21, 1297–1310 (2001).

    Article  CAS  Google Scholar 

  36. Kokontis, J.M., Wagner, A.J., O'Leary, M., Liao, S. & Hay, N. A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 20, 659–668 (2001).

    Article  CAS  Google Scholar 

  37. Chavez-Reyes, A. et al. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res. 63, 8664–8669 (2003).

    CAS  PubMed  Google Scholar 

  38. Fischer, B. & Bavister, B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679 (1993).

    Article  CAS  Google Scholar 

  39. Akazawa, S., Unterman, T. & Metzger, B.E. Glucose metabolism in separated embryos and investing membranes during organogenesis in the rat. Metabolism 43, 830–835 (1994).

    Article  CAS  Google Scholar 

  40. Adelman, D.M., Gertsenstein, M., Nagy, A., Simon, M.C. & Maltepe, E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191–3203 (2000).

    Article  CAS  Google Scholar 

  41. Jimenez, G.S. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat. Genet. 26, 37–43 (2000).

    Article  CAS  Google Scholar 

  42. Chen, J., Wu, X., Lin, J. & Levine, A.J. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16, 2445–2452 (1996).

    Article  CAS  Google Scholar 

  43. Tuveson, D.A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  Google Scholar 

  44. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  Google Scholar 

  45. Attardi, L.D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Adimoolam, S. & Ford, J.M. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl. Acad. Sci. USA 99, 12985–12990 (2002).

    Article  CAS  Google Scholar 

  47. Reczek, E.E., Flores, E.R., Tsay, A.S., Attardi, L.D. & Jacks, T. Multiple response elements and differential p53 binding control Perp expression during apoptosis. Mol. Cancer Res. 1, 1048–1057 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Tuveson for providing the transcriptional stop cassette; T. Jacks for providing the Trp53LSL-LW mice; N. Denko for providing the Slc2a1 probe; R. Freiberg and S. Basak for technical assistance; and S. Artandi, A. Brunet, R. Ihrie and J. Sage for critical reading of the manuscript. This work was supported by a Lucille P. Markey Biomedical Research Stanford Graduate Fellowship and a National Science Foundation Graduate Research Fellowship to T.M.J., by the National Institutes of Health to A.G. and by the Damon Runyon Cancer Research Foundation to L.D.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura D Attardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

UV radiation induces p53-dependent and independent apoptosis. (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, T., Hammond, E., Giaccia, A. et al. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 37, 145–152 (2005). https://doi.org/10.1038/ng1498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing