Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis


Using advanced gene targeting methods, generating mouse models of cancer that accurately reproduce the genetic alterations present in human tumors is now relatively straightforward. The challenge is to determine to what extent such models faithfully mimic human disease with respect to the underlying molecular mechanisms that accompany tumor progression. Here we describe a method for comparing mouse models of cancer with human tumors using gene-expression profiling. We applied this method to the analysis of a model of Kras2-mediated lung cancer and found a good relationship to human lung adenocarcinoma, thereby validating the model. Furthermore, we found that whereas a gene-expression signature of KRAS2 activation was not identifiable when analyzing human tumors with known KRAS2 mutation status alone, integrating mouse and human data uncovered a gene-expression signature of KRAS2 mutation in human lung cancer. We confirmed the importance of this signature by gene-expression analysis of short hairpin RNA–mediated inhibition of oncogenic Kras2. These experiments identified both a pattern of gene expression indicative of KRAS2 mutation and potential effectors of oncogenic KRAS2 activity in human cancer. This approach provides a strategy for using genomic analysis of animal models to probe human disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of GSEA across species and data sets.
Figure 2: KRAS2 signature in two human data sets.
Figure 3: The KRAS2 signature is enriched in pancreatic adenocarcinoma.
Figure 4: Real-time PCR analysis of expression of selected KRAS2 signature genes.
Figure 5: Knock-down of KRAS2 in the human lung cancer cell line A549.


  1. van 't Veer, L.J. et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res 5, 57–58 (2002).

    Article  Google Scholar 

  2. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  Google Scholar 

  3. Chang, H.Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  Google Scholar 

  4. Armstrong, S.A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).

    Article  CAS  Google Scholar 

  5. Ferrando, A.A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  Google Scholar 

  6. Ross, M.E. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003).

    Article  CAS  Google Scholar 

  7. Desai, K.V. et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl. Acad. Sci. USA 99, 6967–6972 (2002).

    Article  CAS  Google Scholar 

  8. Huang, E. et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat. Genet. 34, 226–230 (2003).

    Article  CAS  Google Scholar 

  9. Tuveson, D.A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  Google Scholar 

  10. Repasky, G.A., Chenette, E.J. & Der, C.J. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639–647 (2004).

    Article  CAS  Google Scholar 

  11. Zuber, J. et al. A genome-wide survey of RAS transformation targets. Nat. Genet. 24, 144–152 (2000).

    Article  CAS  Google Scholar 

  12. Tchernitsa, O.I. et al. Transcriptional basis of KRAS oncogene-mediated cellular transformation in ovarian epithelial cells. Oncogene 23, 4536–4555 (2004).

    Article  CAS  Google Scholar 

  13. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  14. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  15. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98, 13790–13795 (2001).

    Article  CAS  Google Scholar 

  16. Vapnik, V.N. Statistical Learning Theory (John Wiley and Sons, New York, 1998).

    Google Scholar 

  17. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001).

    Article  CAS  Google Scholar 

  18. Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    Article  CAS  Google Scholar 

  19. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  Google Scholar 

  20. Bonner, A.E., Lemon, W.J., Devereux, T.R., Lubet, R.A. & You, M. Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene 23, 1166–1176 (2004).

    Article  CAS  Google Scholar 

  21. Lo, R.S., Wotton, D. & Massague, J. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J. 20, 128–136 (2001).

    Article  CAS  Google Scholar 

  22. Beer, D.G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

    Article  CAS  Google Scholar 

  23. Naoki, K., Chen, T.H., Richards, W.G., Sugarbaker, D.J. & Meyerson, M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 62, 7001–7003 (2002).

    CAS  PubMed  Google Scholar 

  24. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  25. Iacobuzio-Donahue, C.A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol. 162, 1151–1162 (2003).

    Article  CAS  Google Scholar 

  26. Klimstra, D.S. & Longnecker, D.S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol. 145, 1547–1550 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Peeper, D.S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181 (1997).

    Article  CAS  Google Scholar 

  28. Camps, M. et al. Induction of the mitogen-activated protein kinase phosphatase MKP3 by nerve growth factor in differentiating PC12. FEBS Lett. 425, 271–276 (1998).

    Article  CAS  Google Scholar 

  29. Muda, M. et al. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271, 27205–27208 (1996).

    Article  CAS  Google Scholar 

  30. Kawakami, Y. et al. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat. Cell Biol. 5, 513–519 (2003).

    Article  CAS  Google Scholar 

  31. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  32. Toyoshima, Y. et al. TDAG51 mediates the effects of insulin-like growth factor I (IGF-I) on cell survival. J. Biol. Chem. 279, 25898–25904 (2004).

    Article  CAS  Google Scholar 

  33. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  34. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  35. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  Google Scholar 

  36. Mantel, N. The detection of disease clustering and a generalized regression approach 27, 209–220 (1967).

Download references


We thank P. Tamayo and K. Haigis for comments and critical review of the manuscript and M. You for providing access to the gene expression data and histology slides for the NNK mouse models. This work was supported in part by the National Institutes of Health and the National Cancer Institute. T.J. and T.R.G. are investigators of the Howard Hughes Medical Institute. A.S.-C. was supported in part by grants from the Robert Woods Johnson Foundation (Harold Amos Medical Faculty Development Program) and by a mentored clinical scientist grant from the National Cancer Institute. S.M. received partial support from an Alfred P. Sloan Foundation/U.S. Department of Energy Fellowship in Computational Molecular Biology.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tyler Jacks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Representative example of KrasLA murine lung tumor histology. (PDF 40 kb)

Supplementary Fig. 2

Representative example of Bonner et al carcinogen induced lung tumor histology. (PDF 70 kb)

Supplementary Fig. 3

Distribution of ES scores generated from random gene sets. (PDF 171 kb)

Supplementary Fig. 4

ES scores obtained from gene sets from permuted mouse phenotypes. (PDF 171 kb)

Supplementary Table 1

KrasLA model up-regulated gene set. (XLS 152 kb)

Supplementary Table 2

KrasLA model down-regulated gene set. (XLS 130 kb)

Supplementary Table 3

Venn diagram of KrasLA model and various cancer subtypes. (PDF 51 kb)

Supplementary Table 4

Adenocarcinoma signature. (XLS 42 kb)

Supplementary Table 5

GSEA results for Boston & Ann Arbor lung adenocarcinomas Kras mutant vs. wild-type. (PDF 44 kb)

Supplementary Table 6

Kras signature. (XLS 39 kb)

Supplementary Table 7

GSEA of Kras signature on human datasets. (PDF 46 kb)

Supplementary Table 8

Kras signature in A549 knockdown. (XLS 24 kb)

Supplementary Methods (PDF 4143 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sweet-Cordero, A., Mukherjee, S., Subramanian, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37, 48–55 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing