Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modular epistasis in yeast metabolism

Abstract

Epistatic interactions, manifested in the effects of mutations on the phenotypes caused by other mutations, may help uncover the functional organization of complex biological networks1,2,3. Here, we studied system-level epistatic interactions by computing growth phenotypes of all single and double knockouts of 890 metabolic genes in Saccharomyces cerevisiae, using the framework of flux balance analysis4. A new scale for epistasis identified a distinctive trimodal distribution of these epistatic effects, allowing gene pairs to be classified as buffering, aggravating or noninteracting2,5. We found that the ensuing epistatic interaction network6 could be organized hierarchically into function-enriched modules that interact with each other 'monochromatically' (i.e., with purely aggravating or purely buffering epistatic links). This property extends the concept of epistasis from single genes to functional units and provides a new definition of biological modularity, which emphasizes interactions between, rather than within, functional modules. Our approach can be used to infer functional gene modules from purely phenotypic epistasis measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epistatic interactions between mutations can be classified into three distinct classes.
Figure 2: Epistatic interactions between genes classified by functional annotation groups tend to be of a single sign (i.e., monochromatic).
Figure 3: Schematic description of the Prism algorithm.
Figure 4: Unsupervised organization of the gene interaction network using the Prism algorithm.

Similar content being viewed by others

References

  1. Tong, A.H.Y. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  2. Hartman, J.L., Garvik, B. & Hartwell, L. Cell biology - Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  Google Scholar 

  3. Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  Google Scholar 

  4. Famili, I., Forster, J., Nielsen, J. & Palsson, B.O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139 (2003).

    Article  CAS  Google Scholar 

  5. Phillips, P.C., Otto, S.P. & Whitlock, M.C. Beyond the Average: The Evolutionary Importance of Gene Interactions and Variablity of Epistatic Effects. in Epistasis and the Evolutionary Process (eds. Wolf, J.B., Brodie III, E.D. & Wade, M.J.) 20–38 (Oxford University Press, New York, 2000).

    Google Scholar 

  6. Anholt, R.R. et al. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat. Genet. 35, 180–184 (2003).

    Article  CAS  Google Scholar 

  7. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabasi, A.L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  Google Scholar 

  8. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).

    Article  CAS  Google Scholar 

  9. Papin, J.A., Reed, J.L. & Palsson, B.O. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci. 29, 641–647 (2004).

    Article  CAS  Google Scholar 

  10. Klamt, S. & Gilles, E.D. Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226–234 (2004).

    Article  CAS  Google Scholar 

  11. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22, 86–92 (2004).

    Article  CAS  Google Scholar 

  12. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    Article  CAS  Google Scholar 

  13. Kondrashov, A.S. Deleterious Mutations and the Evolution of Sexual Reproduction. Nature 336, 435–440 (1988).

    Article  CAS  Google Scholar 

  14. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    Article  CAS  Google Scholar 

  15. Burch, C.L., Turner, P.E. & Hanley, K.A. Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design. J. Evol. Biol. 16, 1223–1235 (2003).

    Article  CAS  Google Scholar 

  16. Elena, S.F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J. Mol. Evol. 49, 703–707 (1999).

    Article  CAS  Google Scholar 

  17. Wloch, D.M., Borts, R.H. & Korona, R. Epistatic interactions of spontaneous mutations in haploid strains of the yeast Saccharomyces cerevisiae. J. Evol. Biol. 14, 310–316 (2001).

    Article  CAS  Google Scholar 

  18. Lenski, R.E., Ofria, C., Collier, T.C. & Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999).

    Article  CAS  Google Scholar 

  19. You, L.C. & Yin, J. Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage T7. Genetics 160, 1273–1281 (2002).

    PubMed  PubMed Central  Google Scholar 

  20. Kishony, R. & Leibler, S. Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2, 14 (2003).

    Article  Google Scholar 

  21. Remold, S.K. & Lenski, R.E. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat. Genet. 36, 423–426 (2004).

    Article  CAS  Google Scholar 

  22. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).

    Article  CAS  Google Scholar 

  23. Forster, J., Famili, I., Fu, P., Palsson, B.O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  Google Scholar 

  24. Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Article  CAS  Google Scholar 

  25. Fong, S.S. & Palsson, B.O. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

    Article  CAS  Google Scholar 

  26. Dykhuizen, D.E., Dean, A.M. & Hartl, D.L. Metabolic flux and fitness. Genetics 115, 25–31 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Segrè, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    Article  Google Scholar 

  28. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  Google Scholar 

  29. Kaufman, A., Kupiec, M. & Ruppin, E. Multi-knockout genetic network analysis: the Rad6 example. in 2004 IEEE Computational Systems Bioinformatics Conference 332–340 (IEEE, Stanford, California, 2004).

    Google Scholar 

  30. Salthe, S.N. Evolving Hierarchical Systems. (Columbia University Press, New York, 1985).

Download references

Acknowledgements

We thank L. Garwin, A. Murray, D. Fisher and D. Hartl for feedback and advice; A. Murray for the idea of complete buffering as indicative of biological modularity; Z. Kang for computational help; and J. Aach, U. Alon, N. Berger, A. Dudley, M. Elowitz, D. Fraenkel, G. Getz, M. Hegreness, P. Ma, B. Palsson D. Peer, O. Rando, A. Regev, U. Sauer, N. Shoresh, M. Turelli, D. Weinreich and M. Wright for comments. D.S. and G.C. acknowledge support from the Defense Advanced Research Projects Agency, the Genomes to Life program of the US Department of Energy and the Pharmaceutical Research and Manufacturers of America Foundation. R.K. acknowledges support from the Bauer Center for Genomics Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Kishony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The epistasis scale captures the strength of the epistasis effect relative to natural extreme values. (PDF 4 kb)

Supplementary Fig. 2

Analysis of the effects of double deletions of metabolic enzyme genes in simple metabolic networks demonstrating examples of multiplicative, aggravating and buffering gene deletion interactions. (PDF 27 kb)

Supplementary Fig. 3

Sensitivity analysis with respect to free parameters and physiological conditions. (PDF 3 kb)

Supplementary Fig. 4

Sub-classification of buffering interactions into directional and non-directional links is related to the underlying biochemical network. (PDF 6 kb)

Supplementary Fig. 5

Changes in monochromatically interacting epistasis modules following variation of oxygen uptake rate. (PDF 7 kb)

Supplementary Fig. 6

Examples of monochromatic clustering of three toy networks using the Prism algorithm. (PDF 11 kb)

Supplementary Fig. 7

Randomization algorithms and statistical tests for monochromaticity in the epistasis network. (PDF 7 kb)

Supplementary Table 1

List of free parameters. (PDF 179 kb)

Supplementary Methods

The yeast flux balance model. (PDF 32 kb)

Supplementary Note

Discussion of Prism modules and predicted interactions. (PDF 46 kb)

Supplementary Video 1

Schematic demonstration of monochromatic classification. A network of two types of connections, such as buffering (green) and aggravating (red) epistasis, is sorted into module of genes that interact with one another in a purely monochromatic way. (AVI 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segrè, D., DeLuna, A., Church, G. et al. Modular epistasis in yeast metabolism. Nat Genet 37, 77–83 (2005). https://doi.org/10.1038/ng1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing