Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana


MicroRNAs (miRNAs) in plants and animals function as post-transcriptional regulators of target genes, many of which are involved in multicellular development. miRNAs guide effector complexes to target mRNAs through base-pair complementarity, facilitating site-specific cleavage or translational repression. Biogenesis of miRNAs involves nucleolytic processing of a precursor transcript with extensive foldback structure. Here, we provide evidence that genes encoding miRNAs in plants originated by inverted duplication of target gene sequences. Several recently evolved genes encoding miRNAs in Arabidopsis thaliana and other small RNA–generating loci possess the hallmarks of inverted duplication events that formed the arms on each side of their respective foldback precursors. We propose a model for miRNA evolution that suggests a mechanism for de novo generation of new miRNA genes with unique target specificities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Flowchart for identification of miRNA foldbacks and endogenous small RNA loci with properties that are consistent with derivation by inverted duplication from protein coding genes.
Figure 2: Computational analysis of miRNA and endogenous small RNA–generating foldback sequences.
Figure 3: Genomic regions corresponding to A. thaliana MIR161, MIR163 and the small RNA–generating locus ASRP1729.
Figure 4: Similarity between foldback arms and protein-coding genes.
Figure 5: Biogenesis and function of A. thaliana miR161, miR163 and ASRP1729.
Figure 6: Phylogenetic analysis of MIR161 and MIR163 foldback arms and target families and of ASRP1729 foldback arms and DC1 domain–containing genes.
Figure 7: Inverted duplication model for miRNA gene evolution in plants.


  1. 1

    Bartel, D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana . Curr. Biol. 12, 1484–1495 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753–12758 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Finnegan, E.J. & Matzke, M.A. The small RNA world. J. Cell Sci. 116, 4689–4693 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Floyd, S.K. & Bowman, J.L. Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Poethig, R.S. Life with 25,000 genes. Genome Res. 11, 313–316 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Jones-Rhoades, M.W. & Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787–799 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S.R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Aukerman, M.J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Mallory, A.C., Dugas, D.V., Bartel, D.P. & Bartel, B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14, 1035–106 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Achard, P., Herr, A., Baulcombe, D.C. & Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Emery, J.F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Laufs, P., Peaucelle, A., Morin, H. & Traas, J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311–4322 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Sunkar, R. & Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell 16, 2001–2019 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Xie, Z., Kasschau, K.D. & Carrington, J.C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–117 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Teichmann, S.A. & Babu, M.M. Gene regulatory network growth by duplication. Nat. Genet. 36, 492–496 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Rhoades, M.W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Vazquez, F., Gasciolli, V., Crete, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14, 346–351 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Llave, C., Kasschau, K.D., Rector, M.A. & Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  Google Scholar 

  33. 33

    Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis . Genes Dev. 18, 2368–2379 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Holder, M. & Lewis, P.O. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Mallory, A.C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Kasschau, K.D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell 4, 205–217 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Bartel, B. & Bartel, D.P. MicroRNAs: at the root of plant development? Plant Physiol. 132, 709–717 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Herbert, A. The four Rs of RNA-directed evolution. Nat. Genet. 36, 19–25 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Hurles, M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2, E206 (2004).

    Article  Google Scholar 

  44. 44

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Lin, J.-T. Alternatives to Hamaker's approximations to the cumulative normal distribution and its inverse. Statistician 37, 413–414 (1988).

    Article  Google Scholar 

  47. 47

    Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS  Article  Google Scholar 

  48. 48

    Huelsenbeck, J.P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Posada, D. & Crandall, K.A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    CAS  Article  Google Scholar 

  50. 50

    Swofford, D PAUP*: Phylogenetic analysis using parsimony (*and other methods) 4.0b10 edn. (Sinauer, Sunderland, Massachusetts, 2002).

    Google Scholar 

Download references


We thank S. Givan, D. Smith and C. Sullivan for assistance and advice with computational resources; L. Johansen for initial propagation of the rdr6-15 mutant; and S. Poethig and H. Vaucheret for discussions about trans-acting siRNAs and the suggestion to analyze miR161 in multiple dcl1 mutated alleles. This work was supported by grants from the US National Science Foundation, the US National Institutes of Health and the United States Department of Agriculture.

Author information



Corresponding author

Correspondence to James C Carrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Predicted foldback structures for small RNA generating loci containing inverted repeats with similarity to protein coding genes. (PDF 48 kb)

Supplementary Table 1

MIRNA genes and small RNA-generating loci used for FASTA searches presented in Figure 2. (XLS 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allen, E., Xie, Z., Gustafson, A. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36, 1282–1290 (2004). https://doi.org/10.1038/ng1478

Download citation

Further reading