Nonsense-mediated decay approaches the clinic

Article metrics


Nonsense-mediated decay (NMD) eliminates mRNAs containing premature termination codons and thus helps limit the synthesis of abnormal proteins. New results uncover a broader role of NMD as a pathway that also affects the expression of wild-type genes and alternative-splice products. Because the mechanisms by which NMD operates have received much attention, we discuss here the emerging awareness of the impact of NMD on the manifestation of human genetic diseases. We explore how an understanding of NMD accounts for phenotypic differences in diseases caused by premature termination codons. Specifically, we consider how the protective function of NMD sometimes benefits heterozygous carriers and, in contrast, sometimes contributes to a clinical picture of protein deficiency by inhibiting expression of partially functional proteins. Potential 'NMD therapeutics' will therefore need to strike a balance between the general physiological benefits of NMD and its detrimental effects in cases of specific genetic mutations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Simplified model of NMD.
Figure 2: Position-dependent effects of nonsense mutations of NMD correlate with inheritance pattern and clinical severity of disease.


  1. 1

    Chang, J.C. & Kan, Y.W. Beta-thalassemia, a nonsense mutation in man. Proc. Natl. Acad. Sci. USA 76, 2886–2889 (1979).

  2. 2

    Losson, R. & Lacroute, F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76, 5134–5137 (1979).

  3. 3

    Brogna, S. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3′ end processing of the corresponding pre-mRNA. RNA 5, 562–573 (1999).

  4. 4

    Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993).

  5. 5

    Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

  6. 6

    Brocke, K.S., Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum. Mol. Genet. 11, 331–335 (2002).

  7. 7

    Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).

  8. 8

    Neu-Yilik, G. et al. Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J. 20, 532–540 (2001).

  9. 9

    Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

  10. 10

    Kim, V.N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001).

  11. 11

    Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

  12. 12

    Atkin, A.L. et al. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J. Biol. Chem. 272, 22163–22172 (1997).

  13. 13

    Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

  14. 14

    Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).

  15. 15

    Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

  16. 16

    Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77–87 (2003).

  17. 17

    Page, M.F., Carr, B., Anders, K.R., Grimson, A. & Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 19, 5943–5951 (1999).

  18. 18

    Schell, T., Kulozik, A.E. & Hentze, M.W. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, Reviews 1006.1–1006.6 (2002).

  19. 19

    Singh, G. & Lykke-Andersen, J. New insights into the formation of active nonsense-mediated decay complexes. Trends Biochem. Sci. 28, 464–466 (2003).

  20. 20

    Wilkinson, M.F. The cycle of nonsense. Mol. Cell 12, 1059–1061 (2003).

  21. 21

    Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

  22. 22

    Wang, J., Gudikote, J.P., Olivas, O.R. & Wilkinson, M.F. Boundary-independent polar nonsense-mediated decay. EMBO Rep. 3, 274–279 (2002).

  23. 23

    Chan, D., Weng, Y.M., Graham, H.K., Sillence, D.O. & Bateman, J.F. A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in schmid metaphyseal chondrodysplasia. J. Clin. Invest. 101, 1490–1499. (1998).

  24. 24

    Asselta, R. et al. Congenital afibrinogenemia: mutations leading to premature termination codons in fibrinogen A alpha-chain gene are not associated with the decay of the mutant mRNAs. Blood 98, 3685–3692. (2001).

  25. 25

    Danckwardt, S. et al. Abnormally spliced beta-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood 99, 1811–1816 (2002).

  26. 26

    Romao, L. et al. Nonsense mutations in the human beta-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood 96, 2895–2901 (2000).

  27. 27

    Mango, S.E. Stop making nonSense: the C. elegans smg genes. Trends Genet. 17, 646–653 (2001).

  28. 28

    Bamber, B.A., Beg, A.A., Twyman, R.E. & Jorgensen, E.M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).

  29. 29

    Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).

  30. 30

    Bateman, J.F., Freddi, S., Nattrass, G. & Savarirayan, R. Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum. Mol. Genet. 12, 217–225 (2003).

  31. 31

    Kerr, T.P., Sewry, C.A., Robb, S.A. & Roberts, R.G. Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum. Genet. 109, 402–407 (2001).

  32. 32

    Donnadieu, E. et al. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 18, 665–674 (2003).

  33. 33

    Li, S. & Wilkinson, M.F. Nonsense surveillance in lymphocytes? Immunity 8, 135–141 (1998).

  34. 34

    Frischmeyer, P.A. & Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

  35. 35

    Blaschke, R.J. et al. Transcriptional and translational regulation of the Leri-Weill and Turner syndrome homeobox gene SHOX. J. Biol. Chem. 278, 47820–47826 (2003).

  36. 36

    Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18, 2932–2939 (1998).

  37. 37

    Sun, X. et al. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. Mol. Biol. Cell 12, 1009–1017 (2001).

  38. 38

    Lewis, B.P., Green, R.E. & Brenner, S.E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 100, 189–192 (2003).

  39. 39

    Green, R.E. et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19 Suppl 1, I118–I121 (2003).

  40. 40

    Lamba, J.K. et al. Nonsense mediated decay downregulates conserved alternatively spliced ABCC4 transcripts bearing nonsense codons. Hum. Mol. Genet. 12, 99–109 (2003).

  41. 41

    Gouya, L. et al. The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat. Genet. 30, 27–28 (2002).

  42. 42

    Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

  43. 43

    Wollerton, M.C., Gooding, C., Wagner, E.J., Garcia-Blanco, M.A. & Smith, C.W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

  44. 44

    Snow, B.E. et al. Functional conservation of the telomerase protein EST1p in humans. Curr. Biol. 13, 698–704 (2003).

  45. 45

    Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

  46. 46

    Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife. Genome Biol. 5, 218.1–218.4 (2004).

  47. 47

    Medghalchi, S.M. et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 10, 99–105 (2001).

  48. 48

    Pelczar, P. & Filipowicz, W. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18, 4509–4518 (1998).

  49. 49

    Tycowski, K.T., Shu, M.D. & Steitz, J.A. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996).

  50. 50

    Ruiz-Echevarria, M.J., Czaplinski, K. & Peltz, S.W. Making sense of nonsense in yeast. Trends Biochem. Sci. 21, 433–438 (1996).

  51. 51

    Hall, G.W. & Thein, S. Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood 83, 2031–2037 (1994).

  52. 52

    Thein, S.L. et al. Molecular basis for dominantly inherited inclusion body beta-thalassemia. Proc. Natl. Acad. Sci. USA 87, 3924–3928 (1990).

  53. 53

    Kugler, W., Enssle, J., Hentze, M.W. & Kulozik, A.E. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res. 23, 413–418 (1995).

  54. 54

    Jouanguy, E. et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).

  55. 55

    Jouanguy, E. et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat. Genet. 21, 370–378 (1999).

  56. 56

    Schwabe, G.C. et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am. J. Hum. Genet. 67, 822–831. (2000).

  57. 57

    Schneppenheim, R. et al. Expression and characterization of von Willebrand factor dimerization defects in different types of von Willebrand disease. Blood 97, 2059–2066 (2001).

  58. 58

    Millar, D.S. et al. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum. Genet. 106, 249–257 (2000).

  59. 59

    Rivolta, C., Berson, E.L. & Dryja, T.P. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Hum. Mutat. 18, 488–498 (2001).

  60. 60

    Rosenfeld, P.J. et al. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat. Genet. 1, 209–213 (1992).

  61. 61

    Sung, C.H. et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 88, 6481–6485 (1991).

  62. 62

    Inoue, K. et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat. Genet. 36, 361–369 (2004).

  63. 63

    Perrin-Vidoz, L., Sinilnikova, O.M., Stoppa-Lyonnet, D., Lenoir, G.M. & Mazoyer, S. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum. Mol. Genet. 11, 2805–2814 (2002).

  64. 64

    Kawasaki, T. et al. mRNA and protein expression of p53 mutations in human bladder cancer cell lines. Cancer Lett. 82, 113–121 (1994).

  65. 65

    Williams, C. et al. Assessment of sequence-based p53 gene analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin. Chem. 44, 455–462 (1998).

  66. 66

    Magnusson, K.P. et al. p53 splice acceptor site mutation and increased HsRAD51 protein expression in Bloom's syndrome GM1492 fibroblasts. Gene 246, 247–254 (2000).

  67. 67

    Usuda, J. et al. Restoration of p53 gene function in 12-O-tetradecanoylphorbor 13-acetate-resistant human leukemia K562/TPA cells. Int. J. Oncol. 22, 81–86 (2003).

  68. 68

    King-Underwood, L. & Pritchard-Jones, K. Wilms' tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 91, 2961–2981 (1998).

  69. 69

    Fan, S. et al. Mutant BRCA1 genes antagonize phenotype of wild-type BRCA1. Oncogene 20, 8215–8235 (2001).

  70. 70

    Sylvain, V., Lafarge, S. & Bignon, Y.J. Dominant-negative activity of a Brca1 truncation mutant: effects on proliferation, tumorigenicity in vivo, and chemosensitivity in a mouse ovarian cancer cell line. Int. J. Oncol. 20, 845–853 (2002).

  71. 71

    Cardinali, M., Kratochvil, F.J., Ensley, J.F., Robbins, K.C. & Yeudall, W.A. Functional characterization in vivo of mutant p53 molecules derived from squamous cell carcinomas of the head and neck. Mol. Carcinog. 18, 78–88 (1997).

  72. 72

    Reddy, J.C. et al. WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins. J. Biol. Chem. 270, 10878–10884 (1995).

  73. 73

    Englert, C. et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc. Natl. Acad. Sci. USA 92, 11960–11964 (1995).

  74. 74

    Flaman, J.M. et al. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene 12, 813–818 (1996).

  75. 75

    Chow, V.T., Quek, H.H. & Tock, E.P. Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line. Cancer Lett. 73, 141–148 (1993).

  76. 76

    King-Underwood, L., Renshaw, J. & Pritchard-Jones, K. Mutations in the Wilms' tumor gene WT1 in leukemias. Blood 87, 2171–2179 (1996).

  77. 77

    Little, M.H. et al. Zinc finger point mutations within the WT1 gene in Wilms tumor patients. Proc. Natl. Acad. Sci. USA 89, 4791–4795 (1992).

  78. 78

    Kohsaka, T. et al. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome. Hum. Mutat. 14, 466–470 (1999).

  79. 79

    Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

  80. 80

    Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).

  81. 81

    Eustice, D.C. & Wilhelm, J.M. Fidelity of the eukaryotic codon-anticodon interaction: interference by aminoglycoside antibiotics. Biochemistry 23, 1462–1467 (1984).

  82. 82

    Zsembery, A. et al. Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Hepatology 35, 95–104 (2002).

  83. 83

    Bedwell, D.M. et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat. Med. 3, 1280–1284 (1997).

  84. 84

    Keeling, K.M. et al. Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum. Mol. Genet 10, 291–299 (2001).

  85. 85

    Barton-Davis, E.R., Cordier, L., Shoturma, D.I., Leland, S.E. & Sweeney, H.L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104, 375–381 (1999).

  86. 86

    Du, M. et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J. Mol. Med. 80, 595–604 (2002).

  87. 87

    Sangkuhl, K. et al. Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum. Mol. Genet. 13, 893–903 (2004).

  88. 88

    Dunant, P., Walter, M.C., Karpati, G. & Lochmuller, H. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 27, 624–627 (2003).

  89. 89

    Wilschanski, M. et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441 (2003).

  90. 90

    Wilschanski, M. et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am. J. Respir. Crit. Care Med. 161, 860–865 (2000).

  91. 91

    Clancy, J.P. et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 163, 1683–1692 (2001).

  92. 92

    Wagner, K.R. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann. Neurol. 49, 706–711 (2001).

  93. 93

    Politano, L. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 22, 15–21 (2003).

  94. 94

    Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677 (1993).

  95. 95

    Mann, C.J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. USA 98, 42–47 (2001).

  96. 96

    Lu, Q.L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat. Med. 9, 1009–1014 (2003).

  97. 97

    Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).

  98. 98

    Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

  99. 99

    Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).

  100. 100

    Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).

Download references


We apologize for the limited citation of the primary literature outside of the main focus of this review. We thank N. Gehring for sharing his knowledge of the NMD literature and S. Danckwardt and J. Kunz for discussions. J.A.H. is supported by a fellowship from the Human Frontier Science Program. The experimental work of the authors is supported by the Fritz Thyssen Stiftung and the Deutsche Forschungsgemeinschaft.

Author information

Correspondence to Matthias W Hentze or Andreas E Kulozik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Flow scheme for the experimental analysis of NMD-mediated modulation of PTC-mutated transcripts. (PDF 152 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading