Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes

A Corrigendum to this article was published on 01 September 2004

Abstract

Previous studies have suggested more than 20 genetic intervals that are associated with susceptibility to type 1 diabetes (T1D)1,2, but identification of specific genes has been challenging and largely limited to known candidate genes. Here, we report evidence for an association between T1D and multiple single-nucleotide polymorphisms in 197 kb of genomic DNA in the IDDM5 interval. We cloned a new gene (SUMO4), encoding small ubiquitin-like modifier 4 protein, in the interval. A substitution (M55V) at an evolutionarily conserved residue of the crucial CUE domain of SUMO4 was strongly associated with T1D (P = 1.9 × 10−7). SUMO4 conjugates to IκBα and negatively regulates NFκB transcriptional activity. The M55V substitution resulted in 5.5 times greater NFκB transcriptional activity and 2 times greater expression of IL12B, an NFκB-dependent gene. These findings suggest a new pathway that may be implicated in the pathogenesis of T1D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical and transcription map for the IDDM5 interval.
Figure 2: SUMO4 amino acid homology alignment and tissue distribution.
Figure 3: IκBα is a substrate for SUMO4 modification.
Figure 4: SUMO4 expression inhibits NFκB-dependent transcription.
Figure 5: The 163A→G substitution of SUMO4 regulates NFκB-dependent IL12B expression.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Onengut-Gumuscu, S. & Concannon, P. Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol. Rev. 190, 182–194 (2002).

    Article  CAS  Google Scholar 

  2. Pociot, F. & McDermott, M.F. Genetics of type 1 diabetes mellitus. Genes Immun. 3, 235–249 (2002).

    Article  CAS  Google Scholar 

  3. Twells, R.C. et al. Linkage and association mapping of the LRP5 locus on chromosome 11q13 in type 1 diabetes. Hum. Genet. 113, 99–105 (2003).

    CAS  PubMed  Google Scholar 

  4. Twells, R.C. et al. The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13. Genomics 72, 231–242 (2001).

    Article  CAS  Google Scholar 

  5. Nakagawa, Y. et al. Fine mapping of the diabetes-susceptibility locus, IDDM4, on chromosome 11q13. Am. J. Hum. Genet. 63, 547–556 (1998).

    Article  CAS  Google Scholar 

  6. Eckenrode, S. et al. Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses. Hum. Genet. 106, 14–18 (2000).

    Article  CAS  Google Scholar 

  7. Luo, D.F. et al. Affected-sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25-q27. Am. J. Hum. Genet. 57, 911–919 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo, D.F. et al. Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8. Hum. Mol. Genet. 5, 693–698 (1996).

    Article  CAS  Google Scholar 

  9. Owerbach, D. Physical and genetic mapping of IDDM8 on chromosome 6q27. Diabetes 49, 508–512 (2000).

    Article  CAS  Google Scholar 

  10. Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    Article  CAS  Google Scholar 

  11. Delepine, M. et al. Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. Am. J. Hum. Genet. 60, 174–187 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. & Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell Biol. 22, 7158–7167 (2002).

    Article  CAS  Google Scholar 

  13. Qian, Y., Commane, M., Ninomiya-Tsuji, J., Matsumoto, K. & Li, X. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B. J. Biol. Chem. 276, 41661–41667 (2001).

    Article  CAS  Google Scholar 

  14. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    Article  CAS  Google Scholar 

  15. Takaesu, G. et al. Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol. Cell Biol. 21, 2475–2484 (2001).

    Article  CAS  Google Scholar 

  16. Best, J.L. et al. SUMO-1 protease-1 regulates gene transcription through PML. Mol. Cell 10, 843–855 (2002).

    Article  CAS  Google Scholar 

  17. Joseph, J., Tan, S.H., Karpova, T.S., McNally, J.G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156, 595–602 (2002).

    Article  CAS  Google Scholar 

  18. Melchior, F. & Hengst, L. SUMO-1 and p53. Cell Cycle 1, 245–249 (2002).

    Article  CAS  Google Scholar 

  19. Rogers, R.S., Horvath, C.M. & Matunis, M.J. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091–30097 (2003).

    Article  CAS  Google Scholar 

  20. Ross, S., Best, J.L., Zon, L.I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842 (2002).

    Article  CAS  Google Scholar 

  21. Tian, S., Poukka, H., Palvimo, J.J. & Janne, O.A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J. 367, 907–911 (2002).

    Article  CAS  Google Scholar 

  22. Desterro, J.M., Rodriguez, M.S. & Hay, R.T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  Google Scholar 

  23. Matunis, M.J. On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol. Cell 10, 441–442 (2002).

    Article  CAS  Google Scholar 

  24. Karin, M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).

    Article  CAS  Google Scholar 

  25. May, M.J. & Ghosh, S. Signal transduction through NF-kappa B. Immunol. Today 19, 80–88 (1998).

    Article  CAS  Google Scholar 

  26. Matsuda, A. et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307–3318 (2003).

    Article  CAS  Google Scholar 

  27. Baldwin, A.S. Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  Google Scholar 

  28. Deng, G.Y., Muir, A., Maclaren, N.K. & She, J.X. Association of LMP2 and LMP7 genes within the major histocompatibility complex with insulin-dependent diabetes mellitus: population and family studies. Am. J. Hum. Genet. 56, 528–534 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, C.Y. et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306, 37–44 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.T. Hay for the NFκB-dependent luciferase reporter (3enh conA luc) and IκBα expression construct, R. McIndoe for suggestions about this project and J. Gu for discussion of manuscript preparation. This study was supported in part by grants from the Combined Intramural Grants Program, the Juvenile Diabetes Research Foundation (C.Y.W.) and the National Institute of Child Health and Development (J.X.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Xiong She or Cong-Yi Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

LD of SNPs flanking the IDDM5 interval. (PDF 92 kb)

Supplementary Fig. 2

Pooled DNA sequencing results for the M55V of SUMO4. (PDF 103 kb)

Supplementary Fig. 3

Semi-quantitative Western analysis of IL-p40 in stimulated/unstimulated PBMC lysates from individuals studied in Figure 4. (PDF 123 kb)

Supplementary Table 1

Case-control association results for 001Msp. (PDF 53 kb)

Supplementary Table 2

Family-based association results for 001Msp. (PDF 90 kb)

Supplementary Table 3

Family-based association results for 268Hha. (PDF 89 kb)

Supplementary Table 4

Family-based association results for 012Taq. (PDF 89 kb)

Supplementary Table 5

Case-control association results for M55V. (PDF 44 kb)

Supplementary Table 6

Family-based association results for M55V. (PDF 89 kb)

Supplementary Methods (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Li, M., Zhang, Y. et al. A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes. Nat Genet 36, 837–841 (2004). https://doi.org/10.1038/ng1391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing