Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis


Papillon-Lefèvre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients1,2. Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. Some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset3,4,5,6. The PLS locus has been mapped to chromosome 11q14–q21 (refs 7, 8, 9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Clinical features of PLS.
Figure 2: Fine-mapping of the PLS locus.
Figure 3: Segregation of CTSC mutations in PLS families 6 and 7.
Figure 4: Reduction of cathepsin C activity in PLS.


  1. Gorlin, R.J., Sedano, H. & Anderson, V.E. The syndrome of palmar-plantar hyperkeratosis and premature periodontal destruction of teeth. J. Pediatr. 65, 895–908 (1964).

    Article  CAS  Google Scholar 

  2. Hart, T.C. & Shapira, L. Papillon-Lefèvre syndrome. Periodontol. 2000 6, 88– 100 (1994).

    Article  CAS  Google Scholar 

  3. Brown, R.S. et al. A possible late onset variation of Papillon-Lefèvre syndrome: report of 3 cases. J. Periodontol. 64, 379–386 (1993).

    Article  CAS  Google Scholar 

  4. Bullon, P. et al. Late onset Papillon-Lefèvre syndrome? J. Clin. Periodontol. 20, 662–667 (1993).

    Article  CAS  Google Scholar 

  5. Aubrey Soskolne, W., Stabholz, A., Van Dyke, T.E., Hart, T.C. & Meyle, J. Partial expression of Papillon-Lefèvre syndrome in 2 unrelated families. J. Clin. Periodontol. 23, 764–769 (1996).

    Article  Google Scholar 

  6. Fardal, O., Drangsholt, E. & Olsen, I. Palmar plantar keratosis and unusual periodontal findings. J. Clin. Periodontol. 25, 181– 184 (1998).

    Article  CAS  Google Scholar 

  7. Fischer, J. et al. Mapping of Papillon-Lefèvre syndrome to the chromosome 11q14 region. Eur. J. Hum Genet. 51, 56– 60 (1997).

    Google Scholar 

  8. Laass, M.W. et al. Localisation of a gene for Papillon-Lefèvre syndrome to chromosome 11q14–q21 by homozygosity mapping. Hum. Genet. 101, 376–382 ( 1997).

    Article  CAS  Google Scholar 

  9. Hart, T.C. et al. Sublocalization of the Papillon-Lefèvre syndrome locus on 11q14–q21. Am. J. Med. Genet. 79, 134–139 (1998).

    Article  CAS  Google Scholar 

  10. Rao, N.V., Rao, G.V. & Hoidal, J.R. Human dipeptidyl-peptidase I. Gene characterization, localization, and expression. J. Biol. Chem. 272, 10260 –10265 (1997).

    Article  CAS  Google Scholar 

  11. Paris, A. et al. Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett. 369, 326– 330 (1995).

    Article  CAS  Google Scholar 

  12. Kuribayash, M., Yamada, H., Ohmori, T., Yanai, M. & Imoto, T. Endopeptidase activity of cathepsin C, dipeptidyl aminopeptidase I, from bovine spleen. J. Biochem. 113, 441–449 (1993).

    Article  Google Scholar 

  13. Tempel, T.R., Kimball, H.R., Kakenashi, S. & Amen, C.R. Host factors in periodontal disease: periodontal manifestations of Chediak-Higashi syndrome. J. Periodontal Res. 7 (suppl.), 26–27 (1972).

    Google Scholar 

  14. Hamilton, R.E. Jr & Giansanti, J.S. The Chediak-Higashi syndrome. Report of a case and review of the literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 37, 754–761 (1974).

    Article  Google Scholar 

  15. Pham, C.T.N. et al. Molecular cloning, chromosomal localization, and expression of murine dipeptidyl peptidase I. J. Biol. Chem. 272 , 10695–10703 (1997).

    Article  CAS  Google Scholar 

  16. Breathnach, R. & Chambon, P. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  17. McGrath, M.E. The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct. 28, 181–204 (1999).

    Article  CAS  Google Scholar 

  18. Cigic, B. & Pain, R.H. Competitive inhibition of cathepsin C by guanidinium ions and reexamination of substrate inhibition. Biochem. Biophys. Res. Commun. 258, 6– 10 (1999).

    Article  CAS  Google Scholar 

  19. Oguzkurt, P., Tanyel, F.C., Buyukpamukcu, N. & Hicsonmez, A.J. Increased risk of pyogenic liver abscess in children with Papillon-Lefèvre syndrome. J. Pediatr. Surg. 31, 955– 956 (1996).

    Article  CAS  Google Scholar 

  20. McGuire, M.J., Lipsky, P.E. & Thiele, D.L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 268, 2458– 2467 (1993).

    CAS  PubMed  Google Scholar 

  21. Pham, C.T. & Ley, T.J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627– 8632 (1999).

    Article  CAS  Google Scholar 

  22. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  23. Kruglyak, L. & Lander, E.S. Faster multipoint linkage analysis using Fourier transforms. J. Comput. Biol. 5, 1–7 (1998).

    Article  CAS  Google Scholar 

  24. Wallace, I.J.C., McCusker, C.A. & McCormick, D. The biochemical diagnosis of lysosomal storage diseases—a review of five years experience. Ir. J. Med. Sci. 159 , 203–209 (1990).

    Article  CAS  Google Scholar 

  25. Smyth, M. & O'Cuinn, G. Dipeptidyl aminopeptidase III of guinea-pig brain: specificity for short oligopeptide sequences. J. Neurochem. 63, 1439–1445 (1994).

    Article  CAS  Google Scholar 

Download references


We thank the patients and their families for help with this study, and A. Naylor, A. Wallace, A. Carradice, G. Karbani and A. Jackson for contribution to this work. This study was funded in part by the MRC, Wellcome Trust (grant 058423) and Northern and Yorkshire Regional Health Authority.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nalin S. Thakker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toomes, C., James, J., Wood, A. et al. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23, 421–424 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing