Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardiac myosin binding protein–C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy

Abstract

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease characterized by a ventricular hypertrophy predominantly affecting the inter-ventricular septum and associated with a large extent of myocardial and myofibrillar disarray1. It is the most common cause of sudden death in the young. In the four disease loci found, three genes have been identified which code for β-myosin heavy chain, cardiac tro-ponin T and α-tropomyosin2–7. Recently the human cardiac myosin binding protein-C (MyBP-C) gene was mapped to chromosome 11p11.2 (ref. 8), making this gene a good candidate for the fourth locus, CMH4 (ref. 5). Indeed, MyBP-C is a substantial component of the myofibrils that interacts with several proteins of the thick filament of the sarcomere9–13. In two unrelated French families linked to CMH4, we found a mutation in a splice acceptor site of the MyBP-C gene, which causes the skipping of the associated exon and could produce truncated cardiac MyBP-Cs. Mutations in the cardiac MyBP-C gene likely cause chromosome 11-linked hypertrophic cardiomyopathy, further supporting the hypothesis that hypertrophic cardiomyopathy results from mutations in genes encoding contractile proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maron, B.J. et al. Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology, and therapy (first of two parts). New Engl. J. Med. 316, 780–789 (1987).

    Article  CAS  Google Scholar 

  2. Jarcho, J.A. et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14ql. New Engl. J. Med. 321, 1372–1378 (1989).

    Article  CAS  Google Scholar 

  3. Watkins, H. et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet. 3, 333–337 (1993).

    Article  CAS  Google Scholar 

  4. Thierfelder, L. et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc. natn. Acad. Sci. U.S.A. 90, 6270–6274 (1993).

    Article  CAS  Google Scholar 

  5. Carrier, L. et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genet. 4, 311–313 (1993).

    Article  CAS  Google Scholar 

  6. Geisterfer-Lowrance, A.A.T. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  Google Scholar 

  7. Thierfelder, L. et al. α-troppmyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  Google Scholar 

  8. Gautel, M., Zuffardi, O., Freiburg, A. & Labeit, S. Phospnorylation switches specific for the cardiac isoform of myosin binding protein C: a modulator of cardiac contraction? EMBO J. 14, 1952–1960 (1995).

    Article  CAS  Google Scholar 

  9. Offer, G., Moos, C. & Starr, R. A new protein of the thick filaments of vertebrate skeletal myofibrils. J. molec. Biol. 74, 653–676 (1973).

    Article  CAS  Google Scholar 

  10. Starr, R. & Offer, G. The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem. J. 171, 813–616 (1978).

    Article  CAS  Google Scholar 

  11. Moos, C., Mason, C.M., Besterman, J.M., Feng, I.N.M. & Dubin, J.H. The binding of skeletal muscle C-protein to F-actin, and its relation to the interaction of actin with myosin subfragment-1. J. molec. Biol. 124, 571–586 (1978).

    Article  CAS  Google Scholar 

  12. Yamamoto, K. & Moos, C., The C-proteins of rabbit red, white, and cardiac muscles. J. biol. Chem. 258, 8395–8401 (1983).

    CAS  PubMed  Google Scholar 

  13. Fürst, D.O., Vinkemeyer, U. & Weber, K. Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full-length cDNA. J. Cell Sci. 102, 769–778 (1992).

    PubMed  Google Scholar 

  14. James, M.R. et al. A radiation hybrid map of 506 STS markers spanning human chromosome 11. Nature Genet. 8, 70–76 (1994).

    Article  CAS  Google Scholar 

  15. Einheber, S. & Fischman, D. Isolation and characterization of a cDNA clone encoding avian skeletal muscle C-protein: an intracellular member of the immunoglobulin superfamily. Proc. natn. Acad. Sci. U.S.A. 87, 2157–2161 (1990).

    Article  CAS  Google Scholar 

  16. Okagaki, T. et al. The major myosin-binding domain of skeletal muscle MyBP-C (C protein) resides in the COOH-terminal, immunoglobulin C2 motif. J. Cell Biol. 123, 619–626 (1993).

    Article  CAS  Google Scholar 

  17. Koretz, J.F., Coluccio, L.M. & Bertasso, A.M. The aggregation characteristics of column-purified rabbit skeletal myosin in the presence and absence of C-protein at pH 7.0. Biophys. J. 37, 433–440 (1982).

    Article  CAS  Google Scholar 

  18. Moos, C. & Feng, I.N.M. Effect of C-Protein on actomyosin ATPase. Biochem. biophys. Acta 632, 141–149 (1980).

    Article  CAS  Google Scholar 

  19. Hofmann, P.A., Hartzell, H.C. & Moss, R.L. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J. gen. Physiol. 97, 1141–1163 (1991).

    Article  CAS  Google Scholar 

  20. Granzier, H.L. & Irving, T.C. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68, 1027–1044 (1995).

    Article  CAS  Google Scholar 

  21. de Tombe, P. & ter Keurs, H. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J. Physiol. 454, 619–642 (1992).

    Article  CAS  Google Scholar 

  22. Sweitzer, N. & Moss, R. Determinants of loaded shortening velocity in single cardiac myocytes permeabilized with α-hemolysin. Circulation Res. 73, 1150–1162 (1993).

    Article  CAS  Google Scholar 

  23. Hartzell, H.C. & Titus, L. Effects of cholinergic and adrenergic agonists on phosphorylation of a 165,000-dalton myofibrillar protein in intact cardiac muscle. J. biol. Chem. 257, 2111–2120 (1982).

    CAS  PubMed  Google Scholar 

  24. Schwartz, K. et al. Exclusion of myosin heavy chain and cardiac actin gene involvement in hypertrophic cardiomyopathies of several French families. Circulation Res. 71, 3–8 (1992).

    Article  CAS  Google Scholar 

  25. Weissenbach, J. et al. A second generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  26. Vignal, A. Nonradioactive multiplex procedure for genotyping of microsatellite markers in Methods in Molecular Genetics: Chromosome and Gene Analysis 1 (ed. K.W. Adolph), 211–221 (Academic Press, Oriando, Florida, 1993).

    Google Scholar 

  27. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. Touchdown PCR to circumvent spurious priming during gene amplification. Nucl. Acids Res. 19, 4008 (1991).

    Article  CAS  Google Scholar 

  28. Ott, J. Linkage analysis and family classification under heterogeneity. Ann. hum. Genet. 47, 311–320 (1983).

    Article  CAS  Google Scholar 

  29. Bonne, G., Carrier, L., Komajda, M. & Schwartz, K. The COX8 gene is not the disease gene of the CMH4 locus in Familial Hypertrophic Cardiomyopathy. J. med. Genet. 32, 670–671 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonne, G., Carrier, L., Bercovici, J. et al. Cardiac myosin binding protein–C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet 11, 438–440 (1995). https://doi.org/10.1038/ng1295-438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing