Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy

Abstract

Two lines of transgenic mdx mice have been generated that express a 71 kD non-muscle isoform of dystrophin (Dp71) in skeletal muscle. This isoform contains the cysteine-rich and Oterminal domains of dystrophin, but lacks the N-terminal actin-binding and central spectrin-like repeat domains. Dp71 was associated with the sarcolemma membrane, where it restored normal expression and localization of all members of the dystrophin-associated glycoprotein complex. However, the skeletal muscle pathology of the transgenic mdx mice remained severe. These results indicate that the dystrophin C terminus cannot function independently to prevent dystrophic symptoms and confirms predictions based on patient data that both the N and C-terminal domains are required for normal dystrophin function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hoffman, E.P., Brown, R.H. Jr. & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    CAS  Article  Google Scholar 

  2. 2

    Monaco, A.P. et al. Isolation of candidate cDNA clones for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    CAS  Article  Google Scholar 

  3. 3

    Ahn, A.H. & Kunkel, L.M. The structural and functional diversity of dystrophin. Nature Genet. 3, 283–291 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Byers, T.J., Lidov, H.G.W. & Kunkel, L.M. An alternative dystrophin transcript specific to peripheral nerve. Nature Genet. 4, 77–81 (1993).

    CAS  Article  Google Scholar 

  5. 5

    Lederfein, D. et al. A 71-kilodalton protein is a major product of the Duchenne muscular dystrophy gene in brain and other nonmuscie tissues. Proc. natn. Acad. Sci. U.S.A. 89, 5346–5350 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988).

    CAS  Article  Google Scholar 

  7. 7

    Way, M., Pope, B., Cross, R.A., Kendrick-Jones, J. & Weeds, A.G. Expression of the N-terminal domain of dystrophin in E. coil and demonstration of binding to F-actin. FEBS Lett. 301, 243–245 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Senter, L. et al. Interaction ofdystrophin with cytoskeletal proteins: Binding to talin and actin. Biochem. Biophys. Res. Commun. 192, 899–904 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Corrado, K., Mills, P.L. & Chamberlain, J.S. Deletion analysis of the dystrophin actin binding domain. FEBS Lett. 344, 255–260 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin glycoprotein complex. Cell 66, 1121–1131 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Ervasti, J.M. & Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. cell Biol. 122, 809–823 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Suzuki, A., Yoshida, M., Yamamoto, H. & Ozawa, E. Glycoprotein-binding site of dystrophin is confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. FEBS Lett. 308, 154–160 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Suzuki, A. et al. Molecular organization at the glycoprotein-complex-binding site of dystrophin — Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur. J. Biochem. 220, 283–292 (1994).

    CAS  Article  Google Scholar 

  14. 14

    England, S.B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Passos-Bueno, M.R., Vainzof, M., Marie, S.K. & Zatz, M. Half the dystrophin gene is apparently enough for a mild clinical course: confirmation of its potential use for gene therapy. Hum. molec. Genet. 3, 919–922 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Koenig, M. et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am. J. hum. Genet. 45, 498–506 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Prior, T.W. et al. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient. Nature Genet. 4, 357–360 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Malhotra, S.B. et al. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science 242, 755–759 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Hoffman, E.P. et al. Is the carboxyl-terminus of dystrophin required for membrane association? A novel, severe case of Duchenne muscular dystrophy. Ann. Neurol. 30, 605–610 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Matsumura, K. et al. Deficiency of dystrophin-associated proteinsin Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin. J. clin. Invest. 92, 866–871 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Sicinski, P. et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244, 1578–1580 (1989).

    CAS  Article  Google Scholar 

  22. 22

    Ohlendieck, K. & Campbell, K.P. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J. Cell Biol. 115, 1685–1694 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Ohlendieck, K., et al. Duchenne muscular dystrophy: Deficiency of dystrophin associated proteins in the sarcolemma. Neurology 43, 795–800 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Rapaport, D. et al. Characerization and cell type distribution of a novel, major transcript of the Duchenne muscular dystrophy gene. Differentiation 49, 187–193 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Jaynes, J.B., Chamberlain, J.S., Buskin, J.N., Johnson, J.E. & Hauschka, S.D. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Molec. cell. Biol. 6, 2855–2864 (1986).

    CAS  Article  Google Scholar 

  27. 27

    Johnson, J.E., Wold, B.J. & Hauschka, S.D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Molec. cell. Biol. 9, 3393–3399 (1989).

    CAS  Article  Google Scholar 

  28. 28

    Cox, G.A., Phelps, S.F., Chapman, V.M. & Chamberlain, J.S. New mdx mutation disrupts expression of muscle and non muscle isoforms of dystrophin. Nature Genet. 4, 87–93 (1993).

    CAS  Article  Google Scholar 

  29. 29

    Feener, C.A., Koenig, M. & Kunkel, L.M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).

    CAS  Article  Google Scholar 

  30. 30

    Bies, R.D. et al. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development. Nucl. Acids Res. 20, 1725–1731 (1992).

    CAS  Article  Google Scholar 

  31. 31

    Bennett, V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol. Rev. 70, 1029–1065 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Luise, M. et al. Dystrophin is phosphorylated by endogenous protein kinases. Biochem. J. 293, 243–247 (1993).

    CAS  Article  Google Scholar 

  33. 33

    Milner, R.E., Busaan, J.L., Holmes, C.F.B., Wang, J.H. & Michalak, M. Phosphorylation ofdystrophin. The carboxyl-terminal region of dystrophin is a substrate for in vitro phosphorylation by p34cdc2 protein kinase. J. biol. Chem. 268, 21901–21905 (1993).

    CAS  PubMed  Google Scholar 

  34. 34

    Madhavan, R. & Jarrett, H.W. Calmodulin-activated phosphorylation of dystrophin. Biochemistry 33, 5797–5804 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Tinsley, J.M. et al. Primary structure of dystrophin-related protein. Nature 360, 591–593 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Tanaka, H., Ishiguro, T., Eguchi, C., Saito, K. & Ozawa, E. Expression of a dystrophin-related protein associated with the skeletal muscle cell membrane. Histochemistry 96, 1–5 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Ohlendieck, K. et al. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron. 7, 499–508 (1991).

    CAS  Article  Google Scholar 

  38. 38

    Milke, T., Miyatake, M., Zhao, J., Yoshioka, K. & Uchino, M. Immunohistochemical dystrophin reaction in synaptic regions. Brain Dev. 11, 344–346 (1989).

    Article  Google Scholar 

  39. 39

    Shimizu, T., Matsumura, K., Sunada, Y. & Mannen, T. Dense immunostaining of both neuromuscular and myotendon junctions with an anti-dystrophin antibody. Biomed. Res. 10, 405–409 (1989).

    CAS  Article  Google Scholar 

  40. 40

    Lyons, P.R. & Slater, C.R. Structure and function of the neuromuscular junction in young adult mdx mice. J. Neurocyt. 20, 969–981 (1991).

    CAS  Article  Google Scholar 

  41. 41

    Partridge, T. Animal models of muscular dystrophy — What can they teach us? Neuropathol. Appl. Neurobiol. 17, 353–363 (1991).

    CAS  Article  Google Scholar 

  42. 42

    Wagner, K.R., Cohen, J.B. & Huganir, R.L. The 87K postsynaptic membrane protein from torpedo is a protein-tyrosine kinase substrate homologous to dystrophin. Neuron 10, 511–522 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Cox, G.A. et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 384, 725–729 (1993).

    Article  Google Scholar 

  44. 44

    Rafael, J.A. et al. Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum. molec. Genet. 3, 1725–1733 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Roberds, S.L et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78, 625–633> (1994).

    CAS  Article  Google Scholar 

  46. 46

    Tome, F.M.S. et al. Congenital muscular dystrophy with merosin deficiency. C. R. Acad. Sci. Paris 317, 351–357 (1994).

    CAS  PubMed  Google Scholar 

  47. 47

    Passos-Bueno, M.R. et al. Genetic heterogeneity for Duchenne-like muscular dystrophy (DLMD) based on linkage and 50 DAG analysis. Hum. molec. Genet. 2, 1945–1947 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Greenberg, D.S., Sunada, Y., Campbell, K.P., Yaffe, D. & Nudel, U. Nature Genet. 8, 340–344 (1994).

  49. 49

    Ohlendieck, K. & Campbell, K.P. Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle. FEBS Lett. 283, 230–234 (1991).

    CAS  Article  Google Scholar 

  50. 50

    Hogan, B., Constantini, F. & Lacey, E. Manipulating the mouse embryo: a laboratory manual. (Cold Spring Harbor Laboratory Press, New York, (1986).

    Google Scholar 

  51. 51

    Chamberlain, J.S., Phelps, S.F., Cox, G.A., Maichele, A.J. & Greenwood, A.D., PCR Analysis of muscular dystrophy in mdx mice. in Molecular and cell biology of muscular dystrophy, (ed. Partridge T.), 167–189 (Chapman & Hall, London, (1993).

    Google Scholar 

  52. 52

    Lee, C.C., Pearlman, J.A., Chamberlain, J.S. & Caskey, C.T. Expression of recombinant dystrophin and its localization to the cell membrane. Nature 349, 334–336 (1991).

    CAS  Article  Google Scholar 

  53. 53

    Ausubel, F.M. Current protocols in molecular biology (John Wiley & Sons, Inc., New York, (1987).

    Google Scholar 

  54. 54

    Harlow, E. & Lane, D.P. Antibodies: A laboratory manual Cold Spring Harbor Laboratory Press, New York, (1988).

    Google Scholar 

  55. 55

    Bulman, D.E., Murphy, E.G., Zubrzycka-Gaarn, E.E., Worton, R.G. & Ray, P.N. Differentiation of Duchenne and Becker muscular dystrophy phenotypes with amino- and carboxy-terminal antisera specific for dystrophin. Am. J. hum. Genet. 48, 295–304 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ohlendieck, K., Ervasti, J.M., Snook, J.B. & Campbell, K.P. Dystrophin glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J. Cell Biol. 112, 135–148 (1991).

    CAS  Article  Google Scholar 

  57. 57

    Roberds, S.L., Anderson, R.D., Ibraghimov-Beskrovnaya, O. & Campbell, K.P. Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (Adhalin). J. Biol. Chem. 268, 23739–23742 (1993).

    CAS  Google Scholar 

  58. 58

    Sambrook, J., Fritsch, E.F., Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed. (Cold Spring Harbor Laboratory Press, New York, (1989).

    Google Scholar 

  59. 59

    Meisenhelder, J. & Hunter, T. Phosphorylation of phospholipase C in vivo and in vitro . Methods Enzymol. 197, 288–305 (1991).

    CAS  Article  Google Scholar 

  60. 60

    Chamberlain, J.S. et al. Mouse dystrophin cDNA Sequence: Genbank accession ♯M68859.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cox, G., Sunada, Y., Campbell, K. et al. Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Nat Genet 8, 333–339 (1994). https://doi.org/10.1038/ng1294-333

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing