Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein

Abstract

von Hippel–Lindau (VHL) gene inactivation occurs in von Hippel–Lindau (VHL) disease. The protein pVHL functions in a multi-subunit E3 ubiquitin ligase that targets the hypoxia-inducible transcription factor Hif1α for proteasomal degradation during normoxia. We establish that pVHL binds to Tat-binding protein-1 (TBP-1), a component of the 19S regulatory complex of the proteasome. TBP-1 associates with the β-domain of pVHL and complexes with pVHL and Hif1α in vivo. Overexpression of TBP-1 promotes degradation of Hif1α in a pVHL-dependent manner that requires the ATPase domain of TBP-1. Blockade of TBP-1 expression by small interfering RNA (siRNA) causes prolonged degradation kinetics of Hif1α. Several distinct mutations in exon 2 of VHL disrupt binding of pVHL to TBP-1. A pVHL mutant containing a P154L substitution coimmunoprecipitates with Hif1α, but not TBP-1, and does not promote degradation of Hif1α. Thus, the ability of pVHL to degrade Hif1α depends in part on its interaction with TBP-1 and suggests a new mechanism for Hif1α stabilization in some pVHL-deficient tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pVHL and TBP-1 interact.
Figure 2: TBP-1 is involved in the pVHL-mediated proteasomal degradation of Hif1α.
Figure 3: Reduced expression of TBP-1 results in delayed degradation kinetics of Hif1α.
Figure 4: Changes in TBP-1 expression do not affect basal expression levels of cellular proteins that are ubiquitinated by E3 ligases other than pVHL.
Figure 5: pVHL, TBP-1 and Hif1α subunits form a complex in vivo.
Figure 6: The β domain of pVHL interacts with the coiled-coil region of TBP-1 and select exon 2 pVHL mutants do not bind TBP-1.
Figure 7: Model of the effect of TBP-1 on pVHL-mediated degradation of Hif1α subunits by the proteasome in normoxia.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kaelin, W.G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  2. Herman, J.G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  Google Scholar 

  3. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  4. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  Google Scholar 

  5. Stebbins, C.E., Kaelin, W.G. Jr. & Pavletich, N.P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  Google Scholar 

  6. Kamura, T., Conrad, M.N., Yan, Q., Conaway, R.C. & Conaway, J.W. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13, 2928–2933 (1999).

    Article  CAS  Google Scholar 

  7. Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  8. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  Google Scholar 

  9. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  Google Scholar 

  10. Bruick, R.K. & McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  Google Scholar 

  11. Epstein, A.C.R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  Google Scholar 

  12. Gnarra, J.R. et al. Molecular cloning of the von Hippel–Lindau tumor suppressor gene and its role in renal carcinoma. Biochim. Biophys. Acta 1242, 201–210 (1996).

    PubMed  Google Scholar 

  13. Clifford, S.C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    Article  CAS  Google Scholar 

  14. Hoffman, M.A. et al. von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    Article  CAS  Google Scholar 

  15. Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL. Nat. Cell Biol. 5, 64–70 (2003).

    Article  CAS  Google Scholar 

  16. Ohh, M. et al. The von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 (1998).

    Article  CAS  Google Scholar 

  17. DeMartino, G.N. et al. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J. Biol. Chem. 271, 3112–3118 (1996).

    Article  CAS  Google Scholar 

  18. Nakamura, T., Tanaka, T., Takagi, H. & Sato, M. Cloning and heterogeneous in vivo expression of Tat binding protein-1 (TBP-1) in the mouse. Biochim. Biophys. Acta 1399, 93–100 (1998).

    Article  CAS  Google Scholar 

  19. Hoyle, J., Tan, K.H. & Fisher, E.M. Localization of genes encoding two human one-domain members of the AAA family: PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1). Hum. Genet. 99, 285–288 (1997).

    Article  CAS  Google Scholar 

  20. Braun, B.C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1, 221–226 (1999).

    Article  CAS  Google Scholar 

  21. Ferrell, K., Wilkinson, C.R., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 25, 83–88 (2000).

    Article  CAS  Google Scholar 

  22. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642–22647 (1997).

    Article  CAS  Google Scholar 

  23. Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998).

    Article  CAS  Google Scholar 

  24. Sung, P., Higgins, D., Prakash, L. & Prakash, S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 7, 3263–3269 (1988).

    Article  CAS  Google Scholar 

  25. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  26. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  Google Scholar 

  27. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6, 185–197 (1995).

    Article  CAS  Google Scholar 

  28. Zachariae, W., Shin, T.H., Galova, M., Obermaier, B. & Nasmyth, K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201–1204 (1996).

    Article  CAS  Google Scholar 

  29. Gnarra, J.R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  Google Scholar 

  30. Whaley, J.M. et al. Germ-line mutations in the von Hippel–Lindau tumor- suppressor gene are similar to somatic von Hippel–Lindau aberrations in sporadic renal cell carcinoma. Am. J. Hum. Mol. Genet. 55, 1092–1102 (1994).

    CAS  Google Scholar 

  31. Crossey, P.A. et al. Identification of intragenic mutations in the von Hippel–Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum. Mol. Genet. 3, 1303–1308 (1994).

    Article  CAS  Google Scholar 

  32. Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  Google Scholar 

  33. Liu, C.W. et al. Conformational remodeling of proteasomal substrates by PA700, the 19S regulatory complex of the 26S proteasome. J. Biol. Chem. 277, 26815–26820 (2002).

    Article  CAS  Google Scholar 

  34. Xie, Y. & Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell Biol. 4, 1003–1007 (2002).

    Article  CAS  Google Scholar 

  35. Iliopoulos, O. et al. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc. Natl. Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  Google Scholar 

  36. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  37. Gardner, L.B. et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J. Biol. Chem. 276, 7919–7926 (2001).

    Article  CAS  Google Scholar 

  38. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Rountree and K. Bachman for technical assistance with the yeast two-hybrid assay in the initial phase of this study and C. Stolle for clinical information on individuals with VHL disease. This work was supported by grants from the US National Institutes of Health and by the Howard Hughes Medical Institute. W.S.E-D. is an Assistant Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafik S El-Deiry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corn, P., McDonald, E., Herman, J. et al. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein. Nat Genet 35, 229–237 (2003). https://doi.org/10.1038/ng1254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing