Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors

Abstract

Natural genetic variation can cause significant differences in gene expression, but little is known about the polymorphisms that affect gene regulation. We analyzed regulatory variation in a cross between laboratory and wild strains of Saccharomyces cerevisiae. Clustering and linkage analysis defined groups of coregulated genes and the loci involved in their regulation. Most expression differences mapped to trans-acting loci. Positional cloning and functional assays showed that polymorphisms in GPA1 and AMN1 affect expression of genes involved in pheromone response and daughter cell separation, respectively. We also asked whether particular classes of genes were more likely to contain trans-regulatory polymorphisms. Notably, transcription factors showed no enrichment, and trans-regulatory variation seems to be broadly dispersed across classes of genes with different molecular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic mapping of cluster regulators.
Figure 2: Coding sequence polymorphisms at trans-regulatory loci.
Figure 3: Effect of AMN1 on clumpiness.

Similar content being viewed by others

References

  1. Oleksiak, M.F., Churchill, G.A. & Crawford, D.L. Variation in gene expression within and among natural populations. Nat. Genet. 32, 261–266 (2002).

    Article  CAS  Google Scholar 

  2. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  3. Cowles, C.R., Hirschhorn, J.N., Altshuler, D. & Lander, E.S. Detection of regulatory variation in mouse genes. Nat. Genet. 32, 432–437 (2002).

    Article  CAS  Google Scholar 

  4. Yan, H., Yuan, W., Velculescu, V.E., Vogelstein, B. & Kinzler, K.W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    Article  CAS  Google Scholar 

  5. Rockman, M.V. & Wray, G.A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    Article  CAS  Google Scholar 

  6. Cheung, V.G. et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat. Genet. 33, 422–425 (2003).

    Article  CAS  Google Scholar 

  7. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  8. Knight, J.C., Keating, B.J., Rockett, K.A. & Kwiatkowski, D.P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat. Genet. 33, 469–475 (2003).

    Article  CAS  Google Scholar 

  9. Wu, L.F. et al. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet. 31, 255–265 (2002).

    Article  CAS  Google Scholar 

  10. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  11. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  12. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  13. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  14. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    Article  CAS  Google Scholar 

  15. Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  Google Scholar 

  16. Jansen, R.C. Opinion: studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet. 4, 145–151 (2003).

    Article  CAS  Google Scholar 

  17. Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

    Article  CAS  Google Scholar 

  18. Hirsch, J.P., Dietzel, C. & Kurjan, J. The carboxyl terminus of Scg1, the G alpha subunit involved in yeast mating, is implicated in interactions with the pheromone receptors. Genes Dev. 5, 467–474 (1991).

    Article  CAS  Google Scholar 

  19. Brown, A.J. et al. Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein α-subunit chimeras. Yeast 16, 11–22 (2000).

    Article  CAS  Google Scholar 

  20. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  Google Scholar 

  21. Souciet, J. et al. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487, 3–12 (2000).

    Article  Google Scholar 

  22. Colman-Lerner, A., Chin, T.E. & Brent, R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739–750 (2001).

    Article  CAS  Google Scholar 

  23. Wang, Y., Shirogane, T., Liu, D., Harper, J.W. & Elledge, S.J. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell 112, 697–709 (2003).

    Article  CAS  Google Scholar 

  24. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  25. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  26. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  Google Scholar 

  27. Jones, E.W., Pringle, J.R. & Broach, J.R. The molecular and cellular biology of the yeast Saccharomyces (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

  28. Forsburg, S.L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178 (1989).

    Article  CAS  Google Scholar 

  29. Spector, M.S., Raff, A., DeSilva, H., Lee, K. & Osley, M.A. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 17, 545–552 (1997).

    Article  CAS  Google Scholar 

  30. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002).

    Article  CAS  Google Scholar 

  31. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  32. Olson, M.V. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23 (1999).

    Article  CAS  Google Scholar 

  33. Rifkin, S.A., Kim, J. & White, K.P. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat. Genet. 33, 138–144 (2003).

    Article  CAS  Google Scholar 

  34. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  Google Scholar 

  35. Mortimer, R.K., Romano, P., Suzzi, G. & Polsinelli, M. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10, 1543–1552 (1994).

    Article  CAS  Google Scholar 

  36. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  37. Gietz, R.D. & Woods, R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96 (2002).

    Article  CAS  Google Scholar 

  38. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

  39. Lorenz, M.C. et al. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158, 113–117 (1995).

    Article  CAS  Google Scholar 

  40. Foss, E.J. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157, 567–577 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Delrow, D. Hare, J. Marty and the Fred Hutchinson Cancer Research Center microarray, oligo synthesis and sequencing facilities for technical assistance; M. Eberle and H. Childs for help in manuscript preparation; D. Gottschling and R. Young for discussions; and H. Coller for discussions and a critical reading of the manuscript. G.Y. and R.B. were supported by postdoctoral fellowships from the Human Frontier Science Program and the National Institutes of Health, respectively. This work was supported by the Howard Hughes Medical Institute, of which L.K. is an associate investigator. L.K. is a James S. McDonnell Centennial Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kruglyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yvert, G., Brem, R., Whittle, J. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35, 57–64 (2003). https://doi.org/10.1038/ng1222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing