Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Unfolding heterochromatin for replication

For DNA replication to proceed through heterochromatin, the replication machinery must negotiate the highly condensed chromatin. A new study shows that an ACF1–ISWI chromatin remodeling complex is required for the replication of pericentromeric heterochromatin. This complex may act to unravel chromatin structure in these regions of the genome, thereby permiting movement of the replication fork.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of heterochromatin in nuclei from human placenta
Figure 2: A model of replication of heterochromatin.

Bob Crimi

References

  1. Dillon, N. & Festenstein, R. Trends Genet. 18, 252–258 (2002).

    Article  CAS  Google Scholar 

  2. Collins, N., Poot, R., Kukimoto, I., Garcia-Jimenez, C. & Varga-Weisz, P. Nature Genet. 32, 627–632 (2002).

    Article  CAS  Google Scholar 

  3. Richards, E.J. & Elgin, S.C. Cell 108, 489–500 (2002).

    Article  CAS  Google Scholar 

  4. Bannister, A.J. et al. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  5. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  6. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  7. Jones, P.A. & Takai, D. Science 293, 1068–1070 (2001).

    Article  CAS  Google Scholar 

  8. Jones, P.L. et al. Nature Genet. 19, 187–191 (1998).

    Article  CAS  Google Scholar 

  9. Ng, H.H. et al. Nature Genet. 23, 58–61 (1999).

    Article  CAS  Google Scholar 

  10. Tsukiyama, T. Nature Rev. Mol. Cell Biol. 3, 422–429 (2002).

    Article  CAS  Google Scholar 

  11. Langst, G. & Becker, P.B. J. Cell Sci. 114, 2561–2568 (2001).

    CAS  Google Scholar 

  12. Alexiadis, V., Varga-Weisz, P.D., Bonte, E., Becker, P.B. & Gruss, C. EMBO J. 17, 3428–3438 (1998).

    Article  CAS  Google Scholar 

  13. Tate, P., Lee, M., Tweedie, S., Skarnes, W.C. & Bickmore, W.A. J. Cell Sci. 111 (Pt 17), 2575–2585 (1998).

    CAS  Google Scholar 

  14. Fuss, J. & Linn, S. J. Biol. Chem. 277, 8658–8666 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Imbalzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Serna, I., Imbalzano, A. Unfolding heterochromatin for replication. Nat Genet 32, 560–562 (2002). https://doi.org/10.1038/ng1202-560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1202-560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing