Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene

Abstract

Mammalian cytochrome c oxidase (COX) catalyses the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane1. Mitochondrial DNA (mtDNA) encodes three COX subunits (I–III) and nuclear DNA (nDNA) encodes ten. In addition, ancillary proteins are required for the correct assembly and function of COX (refs 2, 3, 4, 5, 6). Although pathogenic mutations in mtDNA-encoded COX subunits have been described7, no mutations in the nDNA-encoded subunits have been uncovered in any mendelian-inherited COX deficiency disorder8,9,10,11,12,13. In yeast, two related COX assembly genes, SCO1 and SCO2 (for synthesis of cytochrome c oxidase), enable subunits I and II to be incorporated into the holoprotein. Here we have identified mutations in the human homologue, SCO2, in three unrelated infants with a newly recognized fatal cardioencephalomyopathy and COX deficiency. Immunohistochemical studies implied that the enzymatic deficiency, which was most severe in cardiac and skeletal muscle, was due to the loss of mtDNA-encoded COX subunits. The clinical phenotype caused by mutations in human SCO2 differs from that caused by mutations in SURF1, the only other known COX assembly gene associated with a human disease, Leigh syndrome14,15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Alignment of the deduced yeast (y) and human (h) SCO polypeptides (sizes, in amino acids, at right).
Figure 2: Northern-blot hybridization of human mRNA from the indicated tissues with probes specific for SCO1, SCO2 and β-actin.
Figure 3: Morphology of muscle serial sections from patients 2 (P2) and 3 (P3) compared with control (C).
Figure 4: Detection of SCO2 mutations in cardioencephalomyopathy patients.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Michel, H., Behr, J., Harrenga, A. & Kannt, A. Cytochrome c oxidase: structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 27, 329–356 ( 1998).

    CAS  Article  Google Scholar 

  2. 2

    Pel, H.J., Tzagoloff, A. & Grivell, L.A. The identification of 18 nuclear genes required for the expression of the yeast mitochondrial gene encoding cytochrome c oxidase subunit 1. Curr. Genet. 21, 139– 146 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Glerum, D.M. & Tzagoloff, A. Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant. Proc. Natl Acad. Sci. USA 91, 8452–8456 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Petruzzella, V. et al. Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 15, 494– 504 (1998).

    Article  Google Scholar 

  5. 5

    Amaravadi, R., Glerum, D.M. & Tzagoloff, A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum. Genet. 99, 329–333 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Bonnefoy, N. et al. Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1 mutation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 91, 11978–11982 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Schon, E.A., Bonilla, E. & DiMauro, S. Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr. 29, 131–149 (1997).

    CAS  Article  Google Scholar 

  8. 8

    DiMauro, S. et al. Fatal infantile mitochondrial myopathy and renal dysfunction due to cytochrome-c-oxidase deficiency. Neurology 30 , 795–804 (1980).

    CAS  Article  Google Scholar 

  9. 9

    DiMauro, S. et al. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann. Neurol. 14, 226–234 (1983).

    CAS  Article  Google Scholar 

  10. 10

    Lombes, A. et al. Biochemical and molecular analysis of cytochrome c oxidase deficiency in Leigh's syndrome. Neurology 41 , 491–498 (1991).

    CAS  Article  Google Scholar 

  11. 11

    DiMauro, S., Hirano, M., Bonilla, E., Moraes, C.T. & Schon, E.A. Cytochrome oxidase deficiency: progress and problems. in Mitochondrial Disorders in Neurology (eds Schapira, A.H.V. & DiMauro, S.) 91–115 (Butterworth-Heinemann, Oxford, 1994).

    Chapter  Google Scholar 

  12. 12

    Adams, P.L., Lightowlers, R.N. & Turnbull, D.M. Molecular analysis of cytochrome c oxidase deficiency in Leigh's syndrome. Ann. Neurol. 41, 268–270 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Jaksch, M. et al. A systematic mutation screen of 10 nuclear and 25 mitochondrial candidate genes in 21 patients with cytochrome c oxidase (COX) deficiency shows tRNA(Ser)(UCN) mutations in a subgroup with syndromal encephalopathy. J. Med. Genet. 35, 895– 900 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Zhu, Z. et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nature Genet. 20, 337–343 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Tiranti, V. et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 63, 1609–1621 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Buchwald, P., Krummeck, G. & Rödel, G. Immunological identification of yeast SCO1 protein as a component of the inner mitochondrial membrane. Mol. Gen. Genet. 229, 413–420 ( 1991).

    CAS  Article  Google Scholar 

  17. 17

    Schulze, M. & Rödel, G. SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Mol. Gen. Genet. 211, 492– 498 (1988).

    CAS  Article  Google Scholar 

  18. 18

    Schulze, M. & Rödel, G. Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene. Mol. Gen. Genet. 216, 37–43 ( 1989).

    CAS  Article  Google Scholar 

  19. 19

    Krummeck, G. & Rödel, G. Yeast SCO1 protein is required for a post-translational step in the accumulation of mitochondrial cytochrome c oxidase subunits I and II. Curr. Genet. 18, 13–15 (1990).

    CAS  Article  Google Scholar 

  20. 20

    Glerum, D.M., Shtanko, A. & Tzagoloff, A. SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae . J. Biol. Chem. 271, 20531– 20535 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Glerum, D.M., Shtanko, A. & Tzagoloff, A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504–14509 ( 1996).

    CAS  Article  Google Scholar 

  22. 22

    Rentzsch, A. et al. Mitochondrial copper metabolism in yeast: mutational analysis of Sco1p involved in the biogenesis of cytochrome c oxidase. Curr. Genet. 35, 103–108 (1999).

    CAS  Article  Google Scholar 

  23. 23

    McEwen, J.E., Ko, C., Kloeckner-Gruissem, B. & Poyton, R.O. Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae. J. Biol. Chem. 261, 11872–11879 (1986).

    CAS  Google Scholar 

  24. 24

    DiMauro, S. et al. Cytochrome c oxidase deficiency in Leigh syndrome. Ann. Neurol. 22, 498–506 (1987).

    CAS  Article  Google Scholar 

  25. 25

    Merante, F. et al. A biochemically distinct form of cytochrome oxidase (COX) deficiency in the Saguenay-Lac-Saint-Jean region of Quebec. Am. J. Hum. Genet. 53, 481–487 (1993).

    CAS  PubMed Central  Google Scholar 

  26. 26

    Taanman, J.-W., Herzberg, N.H., De Vries, H., Bolhuis, P.A. & Van den Bogert, C. Steady-state transcript levels of cytochrome c oxidase genes during human myogenesis indicate subunit switching of subunit VIa and co-expression of subunit VIIa isoforms. Biochim. Biophys. Acta 1139, 155–162 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Preiss, T. & Lightowlers, R.N. Post-transcriptional regulation of tissue-specific isoforms. A bovine cytosolic RNA-binding protein, COLBP, associates with messenger RNA encoding the liver-form isopeptides of cytochrome c oxidase. J. Biol. Chem. 268, 10659 –10667 (1993).

    CAS  Google Scholar 

  28. 28

    Paret, C., Ostermann, K., Krause-Buchholz, U., Rentzsch, A. & Rödel, G. Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization. FEBS Lett. 447, 65–70 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Sciacco, M. & Bonilla, E. Cytochemistry and immunocytochemistry of mitochondria in tissue sections. Methods Enzymol. 264, 509–521 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. Guo, P. Kranz-Eberle, F. Pallotti, P. Magalhães, G. Manfredi, R. Pons and S. Tadesse for technical assistance; E. Holme, M. Huttermann, B. Kadenbach and M. Tulinius for patient samples; and A. Tzagoloff for communicating unpublished data. This work was supported by grants from the National Institutes of Health (NS28828, NS32527, NS11766, HL59657 and HD32062), the Muscular Dystrophy Association and a Neil Hamilton Fairley NHMRC Postdoctoral Fellowship (C.M.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric A. Schon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papadopoulou, L., Sue, C., Davidson, M. et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23, 333–337 (1999). https://doi.org/10.1038/15513

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing