Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa vara-pericarditis syndrome

Abstract

Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases1. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor'2 and 'superficial zone protein'3, contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical features of CACP.
Figure 2: Schematic of the CACP proteoglycan and the putative effects of each mutation.
Figure 3: Expression of CACP mRNA in bovine and human tissues.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Soren, A. Histodiagnosis and Clinical Correlation of Rheumatoid and Other Synovitis (J.B. Lippincott, Philadelphia, 1978).

    Google Scholar 

  2. Turner, K.J. et al. Purification, biochemical characterization, and cloning of a novel megakaryocyte stimulating factor that has megakaryocyte colony stimulating activity. Blood 78 (suppl. 1), 279 (1991).

    Google Scholar 

  3. Flannery, C.R. et al. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem. Biophys. Res. Commun. 254, 535–541 (1999).

    Article  CAS  Google Scholar 

  4. Levick, J.R. Blood flow and mass transport in synovial joints. in >Handbook of Physiology Vol. IV, Microcirculation, Part 2 (eds Renkins, E.M. & Michel, C.C.) 917–947 (American Physiological Society, Bethesda, 1984).

    Google Scholar 

  5. Harris, E.D. Mechanisms of disease: rheumatoid arthritis-pathophysiology and implications for therapy. N. Engl. J. Med. 322, 1277– 1289 (1990).

    Article  Google Scholar 

  6. Wallis, W.J., Simkin, P.A. & Nelp, W.B. Low synovial clearance of iodide provides evidence of hypoperfusion in chronic rheumatoid synovitis. Arthritis Rheum. 28,1096–1104 ( 1985).

    Article  CAS  Google Scholar 

  7. Case, J.P. et al. Transin/stromelysin expression in rheumatoid synovium. A transformation-associated metalloproteinase secreted by phenotypically invasive synoviocytes. Am. J. Pathol. 135, 1055–1064 (1989).

    CAS  PubMed Central  Google Scholar 

  8. Firestein, G.S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 39, 1781–1790 (1996).

    Article  CAS  Google Scholar 

  9. Athreya, B.H. & Schumacher, H.R. Pathologic features of a familial arthropathy associated with congenital flexion contractures of the fingers. Arthritis Rheum. 21, 429– 437 (1978).

    Article  CAS  Google Scholar 

  10. Ochi, T., Iwase, R., Okabe, N., Fink, C.W. & Ono, K. The pathology of the involved tendons in patients with familial arthropathy and congenital camptodactyly. Arthritis Rheum. 26, 896–900 (1983).

    Article  CAS  Google Scholar 

  11. Martinez-Lavin, M. et al. A familial syndrome of pericarditis, arthritis, and camptodactyly. N. Engl. J. Med. 309, 224– 225 (1983).

    Article  CAS  Google Scholar 

  12. Verma, U.N. et al. A syndrome of fibrosing pleuritis, pericarditis, and synovitis with infantile contractures of fingers and toes in 2 sisters: "familial fibrosing serositis". J. Rheumatol. 22, 2349– 2355 (1995).

    CAS  Google Scholar 

  13. McRorie, E.R., Wright, R.A., Errington, M.L. & Luqmani, R.A. Rheumatoid constrictive pericarditis. Br. J. Rheumatol. 36, 100–103 (1997).

    Article  CAS  Google Scholar 

  14. Graham, W.R. Rheumatoid pleuritis. Southern Med. J. 83, 973–975 (1990).

    Article  CAS  Google Scholar 

  15. Bahabri, S.A. et al. The camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Clinical features and genetic mapping to human chromosome 1. Arthritis Rheum. 41, 730–735 ( 1998).

    Article  CAS  Google Scholar 

  16. Ferlanti, E.S., Ryan, J.F., Makalowska, I. & Baxevanis, A.D. WebBLAST 2.0: an integrated solution for organizing and analyzing sequence data. Bioinformatic 15, 422– 423 (1999).

    Article  CAS  Google Scholar 

  17. Schumacher, B.L. et al. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys. 311, 144–152 ( 1994).

    Article  CAS  Google Scholar 

  18. Schumacher, B.L. et al. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J. Orthop. Res. 17, 110–120 (1999).

    Article  CAS  Google Scholar 

  19. Merberg, D.M. et al. in Biology of Vitronectins and Their Receptors (eds Preissner, K.T., Rosenblatt, S., Kost, C., Wegerhoff, J. & Mosher, D.F.) 45–52 (Elsevier Science, Amsterdam, 1993).

    Google Scholar 

  20. Woods, A. & Couchman, J.R. Syndecans: synergistic activators of cell adhesion. Trends Cell Biol. 8, 189 –192 (1998).

    Article  CAS  Google Scholar 

  21. Ponta, H., Wainwright, D. & Herrlich, P. The CD44 protein family. Int. J. Biochem. Cell Biol. 30, 299–305 ( 1998).

    Article  CAS  Google Scholar 

  22. Nishiyama, A. et al. The primary sturcture of NG2, a novel membrane-spanning proteoglycan. J. Cell Biol. 114, 359– 371 (1991).

    Article  CAS  Google Scholar 

  23. David, G. Biology and pathology of the pericellular heparan sulphate proteoglycans. Biochem. Soc. Trans. 19, 816– 820 (1991).

    Article  CAS  Google Scholar 

  24. Iozzo, R.V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).

    Article  CAS  Google Scholar 

  25. Bulutlar, G., Yazici, H., Ozdogan, H. & Schreuder, I. A familial syndrome of pericarditis, arthritis, camptodactyly, and coxa vara. Arthritis Rheum. 29, 436–438 ( 1986).

    Article  CAS  Google Scholar 

  26. Neitzel, H. A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum. Genet. 73, 320– 326 (1986).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainville, New York, 1989).

    Google Scholar 

  28. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using PHRED. Genome Res. 8, 175–185 (1998).

    Article  CAS  Google Scholar 

  29. Gordon, D., Abajian, C. & Green, P. CONSED: a graphical tool for sequence finishing. Genome Res. 8, 195–202 ( 1998).

    Article  CAS  Google Scholar 

  30. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329,1982–1987 (1993).

    Article  CAS  Google Scholar 

  31. van der Luijt, R. et al. Rapid detection of translation-terminating mutations at the adenomatous polyposis coli (APC) gene by direct protein truncation test. Genomics 20, 1–4 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the families for participating and S. Gregory, B. Lamb, E. Eichler and members of their labs, J. Ivanovich, K. Gustashaw, J. Preston, C. Williams, H. Kuivaniemi, G. Tromp, A. Superti-Furga, B. Athreya and I. Simsek for sharing their clinical and scientific expertise. This work was supported by a Biomedical Research Grant from the Arthritis Foundation and NIH grant AR43827 (both to M.L.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey M. Trent or Matthew L. Warman.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcelino, J., Carpten, J., Suwairi, W. et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Nat Genet 23, 319–322 (1999). https://doi.org/10.1038/15496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing