Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice

Abstract

Loss-of-function mutations in the gene (CSTB) encoding human cystatin B, a widely expressed cysteine protease inhibitor, are responsible for a severe neurological disorder known as Unverricht-Lundborg disease (EPM1). The primary cellular events and mechanisms underlying the disease are unknown. We found that mice lacking cystatin B develop myoclonic seizures and ataxia, similar to symptoms seen in the human disease. The principal cytopathology appears to be a loss of cerebellar granule cells, which frequently display condensed nuclei, fragmented DNA and other cellular changes characteristic of apoptosis. This mouse model of EPM1 provides evidence that cystatin B, a non-caspase cysteine protease inhibitor, has a role in preventing cerebellar apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Cstb-deficient mice.
Figure 2: Cstb-deficient mice develop corneal lesions.
Figure 3: Seven-to-nine-month-old mice lacking Cstb have impaired abilities on both the still and rotating rotorod.
Figure 4: Cstb-deficient mice have reduced cell density and contain pyknotic nuclei in the granule cell layer of the cerebellum.
Figure 5: Cstb-deficient mice display TUNEL-positive cells with condensed nuclei in the cerebellum.
Figure 6: Cerebellar granule cells from Cstb-deficient mice display cellular changes characteristic of apoptosis.
Figure 7: Cstb-deficient mice develop myoclonic seizures during sleep.

Similar content being viewed by others

References

  1. Berkovic, S.F., Andermann, F., Carpenter, S. & Wolfe, L.S. Progressive myoclonus epilepsies: specific causes and diagnosis. New Eng. J. Med. 315, 296–305 (1985).

    Article  Google Scholar 

  2. Schoffner, J.M., Lott, M.T. & Lezza, A.M.S. Myoclonus epilepsy and red-ragged fiber disease (MERRF) is associated with a mitochondrial DNA tRNAlys mutation. Cell 61, 931–937 (1990).

    Article  Google Scholar 

  3. Vesa, J. et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376, 584–587 (1995).

    Article  CAS  Google Scholar 

  4. International Batten Disease Consortium. Isolation of a novel gene underlying Batten disease, CLN3. Cell 82, 949–957 (1995).

  5. Bonten, E., van der Spoel, A., Fornerod, M., Grosveld, G. & d'Azzo, A. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev. 10, 3156– 3169 (1996).

    Article  CAS  Google Scholar 

  6. Pennacchio, L.A. et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271, 1731–1734 (1996).

    Article  CAS  Google Scholar 

  7. Lalioti, M.D. et al. Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of Progressive Myoclonus Epilepsy (EPM1). Am. J. Hum. Genet. 60, 342– 351 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sleat, D.E. et al. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science 277, 1802–1805 (1997).

    Article  CAS  Google Scholar 

  9. Savukoski, M. et al. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nature Genet. 19, 286– 288 (1998).

    Article  CAS  Google Scholar 

  10. Harriman, D.G.F. & Millar, J.H.D. Progressive familial myoclonic epilepsy in 3 families: its clinical features and pathological basis. Brain 78, 325–349 (1955).

    Article  CAS  Google Scholar 

  11. Zeman, W. & Alpert, M. On the nature of the "stored" lipid substances in juvenile amaurotic idiocy (Batten-Spielmeyer-Vogt). Ann. Histochim. 8, 255–257 (1963).

    CAS  PubMed  Google Scholar 

  12. Carpenter, S., Karpati, G., Andermann, F., Jacob, J.C. & Andermann, E. Lafora's disease: peroxisomal storage in skeletal muscle. Neurol. 24, 531–538 (1974).

    Article  CAS  Google Scholar 

  13. O'Brien, J.S. The cherry red spot-myoclonus syndrome: a newly recognized inherited lysosomal storage disease due to acid neuraminidase deficiency. Clin. Genet. 14, 55–60 ( 1978).

    Article  CAS  Google Scholar 

  14. Wallace, D.C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).

    Article  CAS  Google Scholar 

  15. Bindoff, L.A. et al. Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): a clinical, biochemical and molecular study. J. Neurol. Sci. 102, 17– 24 (1991).

    Article  CAS  Google Scholar 

  16. Koskiniemi, M., Donner, M., Majuri, H., Haltia, M. & Norio, R. Progressive myoclonus epilepsy: a clinical and histopathological study. Acta Neurol. Scand. 50, 307– 332 (1974).

    Article  CAS  Google Scholar 

  17. Koskiniemi, M., Toivakka, E. & Donner, M. Progressive myoclonus epilepsy: electroencephalographical findings. Acta Neurol. Scand. 50, 333– 359 (1974).

    Article  CAS  Google Scholar 

  18. Norio, R. & Koskiniemi, M. Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin. Genet. 15, 382–398 (1979).

    Article  CAS  Google Scholar 

  19. Koskiniemi, M. in Paediatric Epilepsy (eds Sillanpää, M., Johannessen, S.I., Blennow, G. & Dam, D.) 37–144 (Wrightson, Hampshire, 1990).

    Google Scholar 

  20. Haltia, M., Kristensson, K. & Sourander, P. Neuropathological studies in three Scandanavian cases of progressive myoclonus epilepsy. Acta Neurol. Scand. 45, 63–77 (1969).

    Article  CAS  Google Scholar 

  21. Eldridge, R., Iivanainen, M., Stern, R., Koerber, T. & Wilder, B.J. "Baltic" myoclonus epilepsy: hereditary disorder of childhood made worse by phenytoin. Lancet 2, 838–842 (1983).

    Article  CAS  Google Scholar 

  22. Barrett, A.J. et al. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 236, 312 (1986).

    Article  CAS  Google Scholar 

  23. Turk, V. & Bode, W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285, 213–219 (1991).

    Article  CAS  Google Scholar 

  24. Rawlings, N.D. & Barrett, A.J. Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 30, 60–71 (1990).

    Article  CAS  Google Scholar 

  25. Ritonja, A., Machleidt, W. & Barrett, A.J. Amino acid sequence of the intracellular cysteine proteinase inhibitor cystatin B from human liver. Biochem. Biophys. Res. Comm. 131, 1187–1192 (1985).

    Article  CAS  Google Scholar 

  26. Barrett, A.J. et al. Inhibitors of cysteine proteases. in Proteinease Inhibitors (eds Barrett, A.J. & Salvesen, G.) 515–569 (Elsevier Publishing, New York, 1986).

    Google Scholar 

  27. Barrett, A.J. & Kirschke, H. Cathepsin B, cathepsin H, and cathepsin L. in Methods in Enzymology Vol. 80 (ed. Lorand, L.) 535–561 (Academy Press, New York, 1981).

    Article  Google Scholar 

  28. Bohley, P. & Seglen, P.O. Proteases and proteolysis in the lysosome. Experientia 48, 151– 157 (1992).

    Article  CAS  Google Scholar 

  29. Marks, N., Berg, M.J. & Benuck, M. Preferential action of rat brain cathepsin B as a peptidyl dipeptidase converting pro-pioid oligopeptides. Arch. Biochem. Biophys. 249, 489–499 (1986).

    Article  CAS  Google Scholar 

  30. Pennacchio, L.A. & Myers, R.M. Isolation and characterization of the mouse cystatin B gene. Genome Res. 6, 1103–1109 (1996).

    Article  CAS  Google Scholar 

  31. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  32. Kyllerman. M., Sommerfelt, K., Hedstrom, A., Wennergren, G. & Holmgren, D. Clinical and neurophysiological development of Unverricht-Lundborg disease in four Swedish siblings. Epilepsia 32, 900–909 (1991).

    Article  CAS  Google Scholar 

  33. Sax, D.S., Hirano, A. & Shofer, R.J. Staggerer, a neurological murine mutant. An electron microscopic study of the cerebellar cortex in the adult. Neurol. 18, 1093–1100 (1968).

    Article  CAS  Google Scholar 

  34. Rakic, P. & Sidman, R.L. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J. Comp. Neurol. 152, 133–161 (1973).

    Article  CAS  Google Scholar 

  35. Caddy, K.W.T. & Biscoe, C.H. Structural and quantitative studies on the normal C3H and lurcher mutant mouse. Philosoph. Trans. R. Soc. London 287, 167–201 (1979).

    Article  CAS  Google Scholar 

  36. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  Google Scholar 

  37. Du, Y. et al. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc. Natl Acad. Sci. USA 94, 11657– 11662 (1997).

    Article  CAS  Google Scholar 

  38. Williams, M.S. & Henkart, P.A. Apoptotic cell death induced by intracellular proteolysis. J. Immunol. 153, 4247–4255 (1994).

    CAS  PubMed  Google Scholar 

  39. Salvesen, G.S. & Dixit, V.M. Caspases: Intracelluar signaling by proteolysis. Cell 91, 443– 446 (1997).

    Article  CAS  Google Scholar 

  40. Zhou, Q. & Salvesen, G.S. Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem. J. 324, 361–364 (1997).

    Article  CAS  Google Scholar 

  41. Tsung, P.K. & Holly, F.J. Protease activity in human tears. Curr. Eye Res. 1, 351– 355 (1981).

    Article  CAS  Google Scholar 

  42. Barka, T., Asbell., P.A., van der Noen, H. & Prasad, A. Cystatins in human tear fluid. Curr. Eye Res. 10, 25–34 (1991).

    Article  CAS  Google Scholar 

  43. Cejkova, J., Lojda, Z., Salonen, E.M. & Vaheri, A. Histochemical study of alkali-burned rabbit anterior eye segment in which severe lesions were prevented by aprotinin treatment. Histochemistry 92, 441–448 (1989).

    Article  CAS  Google Scholar 

  44. Salonen, E.M., Tervo, T., Torma, E., Tarkkanen, A. & Vaheri, A. Plasmin in tear fluid of patients with corneal ulcers: basis for new therapy. Acta Ophthalmol. 65, 3–12 (1987).

    Article  CAS  Google Scholar 

  45. Tervo, T. et al. Contact lens wear is associated with the appearance of plasmin in the tear fluid-preliminary results. Graefes Arch. Clin. Exp. Ophthalmol. 227, 42–44 (1989).

    Article  CAS  Google Scholar 

  46. Luetteke, N.C. et al. TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263–278 (1993).

    Article  CAS  Google Scholar 

  47. Lane, S.C., Jolly, R.D., Schmechel, D.E., Alroy, J. & Boustany, R.-M. Apoptosis as a mechanism of neurodegeneration in Batten's disease. J. Neurochem. 67, 677–683 (1996).

    Article  CAS  Google Scholar 

  48. Bradley, A. Production and analysis of chimaeric mice. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  49. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  50. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cox, D. Vollrath, C. Prange Pennacchio, C. Iannicola, C. Karlovich, G. Barsh and members of the Myers laboratory for discussions and support, F. Davies for use of the rotorod, A. Nagy for the R1 ES cells donation, N. Ghouri for EM sample preparation, S. Krajewski for assistance with EM interpretations and C. Davis for his help with ECoG recordings. This work is supported by grant NIH NS29709 and HD24064 (J.L.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennacchio, L., Bouley, D., Higgins, K. et al. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20, 251–258 (1998). https://doi.org/10.1038/3059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing