Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia

Abstract

Many human anaemias are caused by defects in haemoglobin synthesis. The zebrafish mutant sauternes (sau) has a microcytic, hypochromic anaemia, suggesting that haemoglobin production is perturbed. During embryogenesis, sau mutants have delayed erythroid maturation and abnormal globin gene expression. Using positional cloning techniques, we show that sau encodes the erythroid-specific isoform of δ-aminolevulinate synthase (ALAS2; also known as ALAS-E), the enzyme required for the first step in haem biosynthesis. As mutations in ALAS2 cause congenital sideroblastic anaemia (CSA) in humans, sau represents the first animal model of this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wright-Giemsa staining of circulating embryonic red blood cells from wild-type and sau animals.
Figure 2: Analysis of haemoglobin, embryonic globin and gata1 expression in sau mutant embryos.
Figure 3: Haematologic phenotype of sau adults.
Figure 4: Haem content of sauty121 red blood cells.
Figure 5: alas2 is the sau gene.
Figure 6: Expression of wild-type alas2 cDNA partially rescued the sau phenotype.
Figure 7: Expression analysis of alas1 and alas2 in the zebrafish embryo.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lux, S.E. in Blood: Principles and Practice of Hematology (eds Handin, R.I., Stossel, T.P. & Lux, S.E.) 1383–1398 (J.B. Loppincott, Philadelphia, 1995).

    Google Scholar 

  2. Bridges, K.R. & Seligman, P.A. in Blood: Principles and Practice of Hematology (eds Handin, R.I., Stossel, T.P. & Lux, S.E.) 1433–1472 (J.B. Lippincott, Philadelphia, 1995).

    Google Scholar 

  3. Fleming, M.D. et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genet. 16, 383–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Fleming, M.D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl Acad. Sci. USA 95, 1148–1153 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cotter, P.D., Baumann, M. & Bishop, D.F. Enzymatic defect in "X-linked" sideroblastic anemia: molecular evidence for erythroid δ-aminolvulinate synthase deficiency. Proc. Natl Acad. Sci. USA 89, 4028– 4032 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bottomley, S.S., May, B.K., Cox, T.C., Cotter, P.D. & Bishop, D.F. Molecular defects of erythroid 5-aminolevulinate synthase in X-linked sideroblastic anemia. J. Bioenerg. Biomembr. 27, 161–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sassa, S. & Kappas, A. in Blood: Principles and Practice of Hematology (eds Handin, R.I., Stossel, T.P. & Lux, S.E.) 1388–1398 (J.B. Lippincott, Philadelphia, 1995).

    Google Scholar 

  8. Orkin, S.H. in The Molecular Basis of Blood Diseases (ed. Dyson, J.) 106–122 (W.B. Saunders, Philadelphia, 1987).

    Google Scholar 

  9. Thein, S.L., Wood, W.G., Wickramasinghe, S.N. & Galvin, M.C. ß-thalassemia unlinked to the ß-globin gene in an English family. Blood 82, 961–967 (1993).

    CAS  PubMed  Google Scholar 

  10. Picketts, D.J. et al. ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5, 1899–1907 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Al-Adhami, M.A. & Kunz, Y.W. Ontogenesis of haematopoietic sites in Brachydanio rerio (Hamilton-Buchanan)(Teleostei). Develop. Growth Differ. 19, 171– 179 (1977).

    Article  Google Scholar 

  12. Detrich, H.W.I. et al. Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl Acad. Sci. USA 92, 10713–10717 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, F.-Y. et al. Characterization of adult α- and β-globin genes in the zebrafish. Blood 89, 688– 700 (1997).

    CAS  PubMed  Google Scholar 

  14. Catton, W.T. Blood cell formation in certain teleost fishes. Blood 6, 39–60 (1951).

    CAS  PubMed  Google Scholar 

  15. Rowley, A.F., Hunt, T.C., Page, M. & Mainwaring, G. in Vertebrate Blood Cells (eds Rowley, A.F. & Ratcliffe, N.A.) 19– 128 (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  16. Liao, E.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  19. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37– 46 (1996).

    CAS  PubMed  Google Scholar 

  20. Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311– 319 (1996).

    CAS  PubMed  Google Scholar 

  21. Chen, J.-J. & London, I.M. Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends Biochem. Sci. 20, 105–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hunt, T., Vanderhoff, G. & London, I.M. Control of globin synthesis: the role of heme. J. Mol. Biol. 66, 471–481 (1972).

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda, Y., Fujita, H., Garbaczewski, L. & Sassa, S. Regulation of ß-globin mRNA accumulation by heme in DMSO-sensitive and DMSO-resistant murine erythroleukemia cells. Blood 83, 1662–1667 (1994).

    CAS  PubMed  Google Scholar 

  24. Dabney, B.J. & Beaudet, A.L. Increase in globin chains and globin mRNA in erythroleukemia cells in response to hemin. Arch. Biochem. Biophys. 179, 106–112 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Burger, P.E., Dowdle, E.B., Lukey, P.T. & Wilson, E.L. Basic fibroblast growth factor antagonizes transforming growth factor ß-mediated erythroid differentiation in K562 cells. Blood 83, 1808–1812 (1994).

    CAS  PubMed  Google Scholar 

  26. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, S.L., Africa, D., Horne, S. & Postlethwait, J.H. Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. Genetics 139, 1727– 1735 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goff, D.J. et al. Identification of polymorphic simple sequence repeats in the genome of the zebrafish. Genomics 14, 200–202 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, S.L. et al. Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277– 1288 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Postlethwait, J.H. et al. Vertebrte genome evolution and the zebrafish gene map. Nature Genet. 18, 345– 349 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish. Nature Genet. 18, 338–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Postlethwait, J.H. et al. A genetic linmage map for the zebrafish. Science 264, 699–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Riddle, R.D., Yamamoto, M. & Engel, J.D. Expression of δ-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc. Natl Acad. Sci. USA 86, 792– 796 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bottomley, S.S., Healy, H.M., Brandenburg, M.A. & May, B.K. 5-aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells. Am. J. Hematol. 41, 76–83 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Yin, X. & Dailey, H.A. Erythroid 5-aminolevulinate synthase is required for erythroid differentiation in mouse embryonic stem cells. Blood Cells Mol. Dis. 24, 41–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Harigae, H. et al. Deficient heme and globin synthesis inembryonic stem cells lacking the erythroid-specific δ-aminolevulinate synthase gene. Blood 91, 798–805 (1998).

    CAS  PubMed  Google Scholar 

  37. Porter, P.N., Meints, R.H. & Mesner, K. Enhancement of erythroid colony growth in culture by hemin. Exp. Hematol. 7, 11 (1979).

    CAS  PubMed  Google Scholar 

  38. Cox, T.C. et al. X-linked pyridoxine-responsive sideroblastic anemia due to a THR388-to ser substitutionin erythroid 5-aminolevulinate synthase. N. Engl. J. Med. 330, 675–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Cotter, P.D., Rucknagel, D.L. & Bishop, D.F. X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific δ-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley. Blood 84, 3915–1924 (1994).

    CAS  PubMed  Google Scholar 

  40. White, J.M., Brain, M.C. & Ali, M.A.M. Globin synthesis in sideroblastic anaemia. Br. J. Haematol. 20, 263–275 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Peters, W.E., May, A. & Jacobs, A. Globin chain synthesis ratios in sideroblastic anaemia. Br. J. Haematol. 53, 201–209 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Gomori, G. Microtechnical demonstration of iron. Am. J. Pathol. 12, 655–663 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feder, J.N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Barron, R., Grace, N.D., Sherwood, G. & Powell, L.W. Iron overload complicating sideroblastic anemia—is the gene for hemochromatosis responsible. Gastroenterology 96, 1204– 1206 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Yaouanq, J., Grosbois, B., Jouanolle, A.M., Goasguen, J. & Leblay, R. Haemochromatosis Cys282Tyr mutation in pyridoxine-responsive sideroblastic anaemia. Lancet 349, 1475–1476 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Talbot, W.S. & Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, H., Long, W., Marty, S.D., Sassa, S. & Lin, S. A zebrafish model of hepatoerythropoietic porphyria. Nature Genet. 20, 239–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Westerfield, M. The Zebrafish Book (Univ. of Oregon Press, Eugene, 1993).

    Google Scholar 

  49. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253– 310 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Gong, Z. et al. Rapid identification and isolation of zebrafish cDNA clones. Gene 201, 87–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Sassa, S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J. Exp. Med. 143, 305–315 (1976).

    Article  CAS  PubMed  Google Scholar 

  52. Zhong, T.P. et al. Zebrafish genomic library in yeast artificial chromosomes. Genomics 48, 136–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ota, T. & Amemiya, C.T. A nonradioactive method for improved restriction analysis and fingerprinting of large P1 artificial chromosome clones. Genet. Anal. 12, 173– 178 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Silverman, G.A. in Methods in Molecular Biology: YAC Protocols (ed. Markie, D.) 145–155 (Humana Press, Totowa, 1998).

    Google Scholar 

  55. Bates, G. in Methods in Molecular Biology: YAC protocols (ed. Markie, D.) 139–144 (Humana Press, Totowa, 1998).

    Google Scholar 

  56. White, J.M. & Ali, M.A.M. Globin synthesis in sideroblastic anaemia. Br. J. Haematol. 24, 481– 489 (1973).

    Article  CAS  PubMed  Google Scholar 

  57. Wheby, M.S. in Fundamentals of Clinical Hematology (ed. Thorup, O.A. Jr) 212– 243 (W.B. Saunders, Philadelphia, 1987).

    Google Scholar 

Download references

Acknowledgements

We thank A. Deconinck, S. Ganiatsas and P. Mead for critical review of this manuscript; V. Deane, L. Garbaczewski, C. Rogers and B. Vail for technical assistance. We thank P. Haffter and C. Nusslein-Volhard for providing zebrafish blood mutants before publication, C. Amemiya and G. Silverman for assistance in working with PAC and YAC clones, respectively, and M. Fleming for assistance with prussian blue staining. M. Clark and H. Lerach generously provided kidney cDNA library filters. We also thank Z. Gong for providing the alas1 EST. C. Shackleton provided support for globin structural studies using a VG BioQ mass spectrometer (RR06505). We thank L. Kunkel, S. Orkin and W. Talbot for their support and advice. This work was funded by NIH grants 1RO1 DK53298-01 and P50 DK49216-05 and by USPHS grant DK-32890. H.E.W. is supported through the Northern California Comprehensive Sickle Cell Center Grant No. HL20985. B.H.P. is supported by a Howard Hughes Postdoctoral Fellowship for Physicians. A.C.O. is the recipient of an Anti-Cancer Victoria Postgraduate Research Scholarship. L.I.Z. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brownlie, A., Donovan, A., Pratt, S. et al. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20, 244–250 (1998). https://doi.org/10.1038/3049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing