Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome

An Erratum to this article was published on 01 March 1998

Abstract

Fanconi-Bickel syndrome (FBS) is a rare autosomal-recessive inborn error of metabolism characterized by hepatorenal glycogen accumulation, Fanconi nephropathy and impaired utilization of glucose and galactose1. To date, no underlying enzymatic defect in carbohydrate metabolism has been identified. Therefore, and because of the impairment of both glucose and galactose metabolism, a primary defect of monosaccharide transport across membranes has been suggested1–4. Here we report mutations in the gene encoding the facilitative glucose transporter 2 (GLUT2) in three FBS families, including the original patient described in 1949 by Fanconi and Bickel5 Homozygous mutations were found in affected individuals, whereas all parents tested were heterozygous for the respective mutation. Because all detected mutations (δT446–449, C1251T and C1405T) predict truncated translation products that cannot be expected to have functional monosaccharide transport activity, GLUT2 mutations are probably the cause of FBS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Manz, F. et al. Fanconi-Bickel syndrome. Pediatr. Nephrol. 1, 509–518 (1987).

    CAS  Article  Google Scholar 

  2. 2

    Odièvre, M. Glycogénose hépato-renale avec tubulopathie complexe. Rev. Inst. Hepatol. 16, 1–70 (1966).

    Google Scholar 

  3. 3

    Fellers, F.X., Piedrahita, V. & Galan, E.M. Pseudo-phlorizin diabetes. Pediatr. Res. 1, 304–306 (1967).

    Google Scholar 

  4. 4

    MÜller, D., Santer, R., Krawinkel, M., Christiansen, B. & Schaub, J. Fanconi-Bickel syndrome presenting in neonatal screening for galactosaemia. J. Inherited Metab. Dis. 20, 607–608 (1997).

    Article  Google Scholar 

  5. 5

    Fanconi, G. & Bickel, H. Die chronische Aminoacidurie (Aminosaurediabetes oder nephrotisch-glukosurischer Zwergwuchs) bei der Glykogenose und der Cystinkrankheit. Helv. Paediatr. Acta 4, 359–396 (1949).

    CAS  PubMed  Google Scholar 

  6. 6

    Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219, 713–725 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Fukumoto, H. et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85, 5434–548 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Permutt, M.A. et al. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA. Proc. Natl. Acad. Sci. USA 86, 8688–8692 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Takeda, J., Kayano, T., Fukomoto, H. & Bell, G.I. Organization of the human GLUT2 (pancreatic β-cell and hepatocyte) glucose transporter gene. Diabetes 42, 773–777 (1993).

    CAS  Article  Google Scholar 

  10. 10

    Mueckler, M. et al. Sequence and structure of a human glucose transporter. Science 229, 941–945 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Maiden, M.C.J., Davis, E.O., Baldwin, S.A., Moore, D.C.M. & Henderson, P.J.F. Mammalian and bacterial sugar transport proteins are homologous. Nature 325, 641–643 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Holman, G.D. Side-specific photolabelling of the hexose transporter. Biochem. Soc. Trans. 17, 438–440 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Katagiri, H. et al. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter. J. Biol. Chem. 266, 7769–7773 (1991).

    CAS  PubMed  Google Scholar 

  14. 14

    Garcia, J.C., Strube, M., Leingang, K., Keller, K. & Mueckler, M. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glutl) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J. Biol. Chem. 267, 7770–7776 (1992).

    CAS  PubMed  Google Scholar 

  15. 15

    Ishihara, H. et al. The glucose transport activity of GLUT1 is markedly decreased by substitution of a single amino acid with a different charge at residue 415. Biochem.Biophys. Res. Commun. 176, 922–930 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Oka, Y. et al. C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity. Nature 345, 550–553 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Aperia, A., Bergqvist, G., Linné, T. & Zetterström, R., Fanconi syndrome with malabsorption and galactose intolerance, normal kinase and transferase activity. Acta Paediatr. Scand. 70, 527–533 (1981).

    CAS  Article  Google Scholar 

  18. 18

    Mueckler, M. et al. A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport. J. Biol. Chem. 269, 17765–17767 (1994).

    CAS  PubMed  Google Scholar 

  19. 19

    Shimada, F. et al. Identification of two novel amino acid polymorphisms in beta-cell/liver (GLUT2) glucose transporter in Japanese subjects. Diabetologia 38, 211–215 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Matsubara, A., Tanizawa, Y., Matsutani, A., Kaneko, T., Kaku, K. Sequence variations of the pancreatic islet/liver glucose transporter (GLUT2) gene in Japanese subjects with noninsulin dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 80, 3131–3135 (1995).

    CAS  PubMed  Google Scholar 

  21. 21

    De Vivo, D.C. et al. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N. Engl. J. Med. 325, 703–709 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Chen, Y.T. & Burchell, A. Glycogen storage diseases, in The Metabolic and Molecular Basis of Inherited Disease, 7th ed. (eds Scriver, C.R. et al.) 935–965 (McGraw-Hill, New York, 1995).

    Google Scholar 

  23. 23

    Gitzelmann, R. Glukagonprobleme bei den Glykogenspeicherkrankheiten. Helv. Paediatr. Acta 12, 425–479 (1957).

    Google Scholar 

  24. 24

    Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

  25. 25

    Lowe, T., Sharefkin, J., Yang, S.Q. & Dieffenbach, C.W. A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Res. 18, 1757–1761 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    CAS  Article  Google Scholar 

  27. 27

    Budowle, B., Chakraborty, R., Giusti, A.M., Eisenberg, A.J. & Allen, R.C. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am. J. Hum. Genet. 48, 137–144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to René Santer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santer, R., Schneppenheim, R., Dombrowski, A. et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17, 324–326 (1997). https://doi.org/10.1038/ng1197-324

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing