Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trinucleotide repeats affect DNA replication in vivo

Abstract

(CGG)n (CCG)n and (CTG)n (CAG)n repeats of varying length were cloned into a bacterial plasmid, and the progression of the replication fork through these repeats was followed using electrophoretic analysis of replication intermediates. We observed stalling of the replication fork within repeated DNAs and found that this effect depends on repeat length, repeat orientation relative to the replication origin and the status of protein synthesis in a cell. Interruptions within repeated DNAs, similar to those observed in human genes, abolished the replication blockage. Our results suggest that the formation of unusual DNA structures by trinucleotide repeats in the lagging-strand template may account for the observed replication blockage and have relevance to repeat expansion in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashley, C. Jr. & Warren, S.T. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. McMurray, C.T. Mechanisms of DNA expansion. Chromosoma 104, 2–13 (1995).

    CAS  PubMed  Google Scholar 

  3. Wells, R.D. Molecular basis of genetic instability of triplet repeats. J. Biot. Chem. 271, 2875–2878 (1996).

    Article  CAS  Google Scholar 

  4. Bates, G. & Lehrach, H. Trinucleotide repeat expansions and human genetic disease. Bioessays 16, 277–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Caskey, C.T., Pizzuti, A., Fu, Y.-H., Fenwick, R.G., & Nelson, D.L. Triplet repeat mutations in human disease. Science 256, 784–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Cox, R. & Mirkin, S.M. Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. USA 94, 5237–5242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohwi, Y., Wang, H. & Kohwi-Shigematsu, T. A single trinucleotide, 5′AGC3′/5′GCT3′, of the triplet-repeat disease genes confers metal ion-induced non-B DNA structure. Nucleic Acids Res. 21, 5651–5655 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bacolla, A. et al. Flexible DNA: genetically unstable CTG CAG and CGG CCG from human hereditary neuromuscular disease genes. J. Biol. Chem. 272, 16783–16792 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell, J.E., Newbury, S.F. & McClellan, J.A. Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res. 23, 1876–1881 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petruska, J., Arnheim, N. & Goodman, M.F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Adds Res. 24, 1992–1998 (1996).

    Article  CAS  Google Scholar 

  11. Yu, A. et al. The trinucleotide repeat sequence d(GTC)l5 adopts a hairpin conformation. Nucleic Acids Res. 23, 2706–2714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, A. et al. At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry 36, 3687–3699 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, M., Huang, X., Smith, G.K., Yang, X. & Gao, X. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding: an NMR and UV spectroscopic study. J. Mol. Biol. 264, 323–336 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X. et al. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl. Acad. Sci. USA 92, 5199–5203 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fry, M. & Loeb, L.A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc. Natl. Acad. Sci. USA 91, 4950–4954 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kettani, A., Kumar, R.A. & Patel, D.J. Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J. Mol. Biol. 254, 638–656 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Kuryavyi, V.V. & Jovin, T.M. Triad-DNA: a model for trinucleotide repeats. Nature Genet. 9, 339–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Reiss, A.L. et al. Frequency and stability of the fragile X premutation. Hum. Mol. Genet. 3, 393–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Kunst, C.B. & Warrren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Snow, K., Tester, D.J., Kruckeberg, K.E., Schaid, D.J. & Thibodeau, S.N. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum. Mol. Genet. 3, 1543–1551 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Jodice, C. et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am. J. Hum. Genet. 54, 959–965 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trinh, T.Q. & Sinden, R.R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544–547 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. & Wells, R.D. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J. Biol. Chem. 270, 27014–27021 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Ohshima, K. & Wells, R.D. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J. Biol. Chem. 272, 16798–16806 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Usdin, K. & Woodford, K.J. CGG repeats associated with DNA instability and chromosome fragility from structures that block DNA synthesis in vitro. Nucleic Acids Res. 23, 4202–4209 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, S., Ohshima, K., Jaworski, A. & Wells, R.D. CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event. J. Mol. Biol. 258, 543–547 (1996).

    Google Scholar 

  28. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Bowater, R.P., Rosche, W.A., Jaworski, A., Sinden, R.R. & Wells, R.D. Relationship between Escherichia coli growth and deletions of CTG. CAG triplet repeats in plasmids. J. Mol. Biol. 264, 82–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ohshima, K., Kang, S. & Wells, R.D. CTG triplet repeats from human hereditary diseases are dominant genetic expansion products in Escherichia coli. J. Biol. Chem. 271, 1853–1856 (1996).

    Google Scholar 

  31. Shimizu, M., Gellibolian, R., Oostra, B.A. & Wells, R.D., Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J. Mol. Biol. 258, 614–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Webb, T. Delayed replication of Xq27 in individuals with the fragile X syndrome. Am. J. Med. Genet. 43, 1057–1062 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Hansen, R.S., Canfield, T.K., Lamb, M.M., Gartler, S.M. & Laird, C.D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Subramanian, P.S., Nelson, D.L. & Chinault, A.C. Large domains of apparent delayed replication timing associated with triplet repeat expansion at FRAXA and FRAXE. Am. J. Hum. Genet. 59, 407–416 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brewer, B.J. & Fangman, W.L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Kornberg, A. & Baker, T. DNA Replication, 2nd ed.(W.H. Freeman & Co., New York, (1992).

    Google Scholar 

  37. Amann, E., Ochs, B. & Abel, K.J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69, 301–315 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Martin-Parras, L., Hernandez, P., Martinez-Robles, M. & Schvartzman, J.B. Unidirectional replication as visualised by two-dimensional agarose gel electrophoresis. J. Mol. Biol. 220, 843–855 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Clewell, D.B. Nature of Col E1 plasmid replication in Escherichia coli in the presence of chloramphenicol. J. Bacteriol. 110, 667–676 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Balbas, P. et al. Plasmid vector pBR322 and its special-purpose derivatives—a review. Gene 50, 3–40 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Friedman, K.L. & Brewer, B.J. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol. 262, 613–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Reaban, M.E., Lebowitz, J. & Griffin, J.A. Transcription induces the formation of a stable RNA-DNA hybrid in the immunoglobulin α switch region. J. Biol. Chem. 269, 21850–21857 (1994).

    CAS  PubMed  Google Scholar 

  43. Reaban, M.E. & Griffin, J.A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Jaworski, A. et al. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc. Natl. Acad. Sci. USA 92, 11019–11023 (1995).

    Google Scholar 

  46. Hacker, K.J. & Alberts, B.M. The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix: a model for polymerase release following the termination of each Okazaki fragment. J. Biol. Chem. 269, 24221–24228 (1994).

    CAS  PubMed  Google Scholar 

  47. Krasilnikov, A.S. et al. Mechanisms of triplex-caused polymerization arrest. Nucleic Acids Res. 25, 1339–1346 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gordenin, D.A., Kunkel, T.A. & Resnick, M.A. Repeat expansion—all in a flap? Nature Genet. 16, 116–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Tishkoff, D.X., Filosi, N., Gaida, G.M. & Kolodner, R.D. A novel mutation avoidance mechanism dependent on S.cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Samadashwily, G.M., Dayn, A. & Mirkin, S.M. Suicidal nucleotide sequences for DNA polymerization. EMBO J. 12, 4975–4983 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei M. Mirkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadashwily, G., Raca, G. & Mirkin, S. Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17, 298–304 (1997). https://doi.org/10.1038/ng1197-298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing