Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22

Abstract

Opitz syndrome (OS) is an inherited disorder characterized by midline defects including hypertelorism, hypospadias, lip-palate-laryngotracheal clefts and imperforate anus. We have identified a new gene on Xp22f MIDI (Midline 1), which is disrupted in an OS patient carrying an X-chromosome inversion and is also mutated in several OS families. MID1 encodes a member of the B-box family of proteins, which contain protein–protein interaction domains, including a RING finger, and are implicated in fundamental processes such as body axis patterning and control of cell proliferation. The association of MID1 with OS suggests an important role for this gene in midline development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Opitz, J.M., Summitt, R.L. & Smith, D.W. The BBB syndrome familial telecanthus with associated congenital anomalies. Birth Defects Orig. Art. Ser. (V)2, 86–94 (1969).

    Google Scholar 

  2. Opitz, J.M., Frias, J.L., Guttenberger, J.E. & Pellet, J.R. The G syndrome of multiple congenital anomalies. Birth Defects Orig. Art. Ser. (V)2, 95–102 (1969).

    Google Scholar 

  3. Opitz, J.M. G syndrome (hypertelorism with esophageal abnormality and hypospadias, or hypospadias-dysphagia, or ‘Opitz-Frias’ or ‘Opitz-G’ syndrome): perspective in 1987 and bibliography. Am. J. Med. Genet. 28, 275–285 (1987).

    Article  CAS  Google Scholar 

  4. Robin, N.H., Opitz, J.M. & Muenke, M. Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am. J. Med. Genet. 62, 305–317 (1996).

    Article  CAS  Google Scholar 

  5. Bershof, J.F., Guyuron, B. & Olsen, M.M. G syndrome: a review of the literature and a case report. J. Craniomaxillofac. Surg. 20, 24–27 (1992).

    Article  CAS  Google Scholar 

  6. Cappa, M., Borrelli, P., Marini, R. & Neri, G., Opitz syndrome: a new designation for the clinically indistinguishable BBB and G syndromes. Am. J. Med. Genet. 28, 303–309 (1987).

    Article  CAS  Google Scholar 

  7. Cordero, J.F. & Holmes, L.B. Phenotypic overlap of the BBB and G syndromes. Am. J. Med. Genet. 2, 145–152 (1978).

    Article  CAS  Google Scholar 

  8. Farndon, P.A. & Donnai, D. Male-to-male transmission of the G syndrome. Clin. Genet. 23, 446–448 (1983).

    Google Scholar 

  9. Fryns, J.P., Delooz, J. & van den Berghe, H. Posterior scalp defects in Opitz syndrome: another symptom related to a defect in midline development. Clin. Genet. 42, 314–316 (1992).

    Article  CAS  Google Scholar 

  10. Guion-Almeida, M.L. & Richieri-Costa, A. CMS midline anomalies in the Opitz G/BBB syndrome: report on 12 Brazilian patients. Am. J. Med. Genet. 43, 918–928 (1992).

    Article  CAS  Google Scholar 

  11. Howell, L & Smith, J.D. G syndrome and its otolaryngological manifestations. Ann. Otol. Rhinol. Laryngol. 98, 185–190 (1989).

    Article  CAS  Google Scholar 

  12. MacDonald, M.R., Schaefer, G.B., Olney, A.M., Tamayo, M. & Frias, J.L. Brain magnetic resonance imaging findings in the Opitz G/BBB syndrome: extension of the spectrum of midline brain anomalies. Am. J. Med. Genet. 46, 706–711 (1993).

    Article  CAS  Google Scholar 

  13. Sedano, H.O. & Gorlin, R.J. Opitz oculo-genital-laryngeal syndrome (Opitz BBB/G compound syndrome). Am. J. Med. Genet. 30, 847–849 (1988).

    Article  CAS  Google Scholar 

  14. Stevens, C.A. & Wilroy, R.S. Jr., The telecanthus-hypospadias syndrome. J. Med. Genet. 25, 536–542 (1988).

    Article  CAS  Google Scholar 

  15. Tolmie, J.L., Coutts, N. & Drainer, I.K. Congenital anal anomalies in two families with the Opitz G syndrome. J. Med. Genet. 24, 688–691 (1987).

    Article  CAS  Google Scholar 

  16. Verloes, A., Le Merrer, M. & Briard, M.-L. BBBG syndrome or Opitz syndrome: new family. Am. J. Med. Genet. 34, 313–316 (1989).

    Article  CAS  Google Scholar 

  17. Robin, N.H. et al. Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nature Genet. 11, 459–461 (1995).

    Article  CAS  Google Scholar 

  18. May, M., Huston, S., Wilroy, R.S. & Schwartz, C., Linkage analysis in a family with the Opitz GBBB syndrome refines the location of the gene in Xp22 to a 4 cM region. Am. J. Med. Genet. 68, 244–248 (1997).

    Article  CAS  Google Scholar 

  19. Verloes, A. et al. Opitz GBBB syndrome: chromosomal evidence of an X-linked form. Am. J. Med. Genet. 59, 123–128 (1995).

    Article  CAS  Google Scholar 

  20. Ferrero, G.B. et al. An integrated physical and genetic map of a 35 Mb region on chromosome Xp22.3–Xp21.3. Hum. Mol. Genet. 4, 1821–1827 (1995).

    Article  CAS  Google Scholar 

  21. Wapenaar, M.C. et al. The genes for X-linked ocular albinism (OA1) and microphthalmia with linear skin defects (MLS): cloning and characterization of the critical regions. Hum. Mol. Genet. 2, 947–952 (1993).

    Article  CAS  Google Scholar 

  22. Miller, M. et al. The nuclear-cytoplasmic distribution of the Xenopus nuclearfactor, xnf7, coincides with its state of phosphorylation during early development. Development 113, 569–575 (1991).

    CAS  PubMed  Google Scholar 

  23. Li, X. & Etkin, L.D. Xenopus nuclear factor 7 (xnf7) possesses an NLS that functions efficiently in both oocytes and embryos. J. Cell Sci. 105, 389–395 (1993).

    CAS  PubMed  Google Scholar 

  24. Li, X., Shou, W., Kloc, M., Reddy, B.A. & Etkin, L.D. Cytoplasmic retention of Xenopus nuclear factor 7 before the mid blastula transition uses a unique anchoring mechanism involving a retention domain and several phosphorylation sites. J. Cell Biol. 124, 7–17 (1994).

    Article  CAS  Google Scholar 

  25. Shou, W. et al. Finely tuned regulation of cytoplasmic retention of Xenopus nuclear factor 7 by phosphorylation of individual threonine residues. Mol. Cell. Biol. 16, 990–997 (1996).

    Article  CAS  Google Scholar 

  26. de The, H. et al. The PML-RARα fusion mRNA generated by t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  Google Scholar 

  27. Grignani, F. et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 83, 10–25 (1994).

    CAS  PubMed  Google Scholar 

  28. Wapenaar, M.C. et al. A YAC-based binning strategy facilitating the rapid assembly of cosmid contigs: 1.6 Mb of overlapping cosmids in Xp22. Hum. Mol. Genet. 3, 1155–1161 (1994).

    Article  CAS  Google Scholar 

  29. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

  30. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Adds Res. 12, 857–873 (1984).

    Article  CAS  Google Scholar 

  31. Johnston, K. et al. De novo X;Y translocation associated with imperforate anus and retinal pigmentary abnormalities. Am. J. Med. Genet. 27, 603–611 (1987).

    Article  CAS  Google Scholar 

  32. Borden, K.L.B. et al. Characterisation of a novel cysteine/histidine-rich metal binding domain from Xenopus nuclear factor XNF7. FEBS Lett. 335, 255–260 (1993).

    Article  CAS  Google Scholar 

  33. Mather, I.H. & Jack, L.J. A review of the molecular and cellular biology of butyrophilin, the major protein of bovine milk fat globule membrane. J. Dairy Sci. 76, 3832–3850 (1993).

    Article  CAS  Google Scholar 

  34. Borden, K.L.B. & Freemont, P.S. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6, 395–401 (1996).

    Article  CAS  Google Scholar 

  35. Borden, K.L.B. et al. In viv and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML Proc. Natl. Acad. Sci. USA 93, 1601–1606 (1996).

  36. Takahashi, M., Inaguma, Y., Hiai, H. & Hirose, F. Developmentally regulated expression of a human “finger”-containing gene encoded by the 5′ half of the ret transforming gene. Mol. Cell. Biol. 8, 1853–1856 (1988).

    Article  CAS  Google Scholar 

  37. LeDouarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  38. Reddy, B.A., Kloc, M. & Etkin, L. The cloning and characterization of a maternally expressed novel zinc finger nuclear phosphoprotein (xnf7) in Xenopus laevis. Dev. Biol. 148, 107–116 (1991).

    Article  CAS  Google Scholar 

  39. Patarca, R. et al., rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 85, 2733–2737 (1988).

    Article  CAS  Google Scholar 

  40. Inoue, S. et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc. Natl. Acad. Sci. USA 90, 11117–11121 (1993).

    Article  CAS  Google Scholar 

  41. Bellini, M., Lacroix, J.-C. & Gall, J.G. A putative zinc-binding protein on lampbrush chromosome loops. EMBO J. 12, 107–114 (1993).

    Article  CAS  Google Scholar 

  42. Chan, E.K.L, Hamel, J.C., Buyon, J.P .& Tan, E.M. Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J. Clin. Invest. 87, 68–76 (1991).

    Article  CAS  Google Scholar 

  43. Ishii, T. et al. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim. Biophys. Acta. 1245, 285–292 (1995).

    Article  Google Scholar 

  44. al-Gazali, L.I. et al.Two 46,XX,t(X;Y) females with linear skin defects and congenital microphthalmia: a new syndrome at Xp22.3. J. Med. Genet. 27, 59–63 (1990).

    Article  CAS  Google Scholar 

  45. Temple, I.K., Hurst, J.A., Hing, S., Butler, L. & Baraitser, M. De novo deletion of Xp22. 2-pter in a female with linear skin lesions of the face and neck, microphthalmia, and anterior chamber eye anomalies. J. Med. Genet. 27, 56–58 (1990).

    Article  CAS  Google Scholar 

  46. Bird, L.M., Krous, H.F., Eichenfield, L.F., Swalwell, C.I. & Jones, M.C. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defects (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am. J. Med. Genet. 53, 141–148 (1994).

    Article  CAS  Google Scholar 

  47. Lindsay, E.A. et al. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic and molecular characterization. Am. J. Med. Genet. 49, 229–234 (1994).

    Article  CAS  Google Scholar 

  48. Vortkamp, A., Gessler, M. & Grzeschik, K.-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  Google Scholar 

  49. Marigo, V., Johnson, R.L., Vortkamp, A. & Tabin, C.J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol. 180, 273–283 (1996).

    Article  CAS  Google Scholar 

  50. Hammerschmidt, M., Brook, A. & McMahon, A.P. The world according to hedgehog. Trends Genet. 13, 14–21 (1997).

    Article  CAS  Google Scholar 

  51. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet. 14, 353–356 (1996).

    Article  CAS  Google Scholar 

  52. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  Google Scholar 

  53. Banfi, S. et al. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nature Genet. 13, 167–174 (1996).

    Article  CAS  Google Scholar 

  54. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Second International Conference on Intelligent Systems for Molecular Biology 28–36 (AAAI Press, Menlo Park, California, 1994).

    Google Scholar 

  55. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  56. Maniatis, T., Fritsch, E.S. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982).

    Google Scholar 

  57. Franco, B. et al. A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell 81, 15–25 (1995).

    Article  CAS  Google Scholar 

  58. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  59. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  60. Schaefer, L. et al. A high resolution deletion map of human chromosome Xp22. Nature Genet. 4, 272–279 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ballabio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaderi, N., Schweiger, S., Gaudenz, K. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 17, 285–291 (1997). https://doi.org/10.1038/ng1197-285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing