Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the glutathione synthetase gene cause 5–oxoprolinuria

Abstract

5-Oxoprolinuria (pyroglutamic aciduria)1,2 resulting from glutathione synthetase (GSS) deficiency3,4 is an inherited autosomal recessive disorder characterized, in its severe form, by massive urinary excretion of 5-oxoproline, metabolic acidosis, haemolytic anaemia and central nervous system damage. The metabolic defect results in low GSH levels presumably with feedback over-stimulation of γ-glutamylcysteine synthesis and its subsequent conversion to 5-oxoproline3,4. In this study, we cloned and characterized the human GSS gene and examined three families with four cases of well-documented 5-oxoprolinuria5,6. We identified seven mutations at the GSS locus on six alleles: one splice site mutation, two deletions and four missense mutations. Bacterial expression and yeast complementation assays of the cDNAs encoded by these alleles demonstrated their functional defects. We also characterized a fifth case, an homozygous missense mutation in the gene in an individual affected by a milder-form of the GSS deficiency7, which is apparently restricted to erythrocytes and only associated with haemolytic anaemia. Our data provide the first molecular genetic analysis of 5-oxoprolinuria and demonstrate that GSS deficiency with oxoprolinuria and GSS deficiency without 5-oxoprolinuria are caused by mutations in the same gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jellum, E., Kluge, T., Börresen, H.C., Stokke, O. & Eldjarn, L. Pyroglutamic aciduria — A new inborn error of metabolism. Scand. J. Clin. Lab. Invest. 26, 327–335 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Larsson, A. et al. 5-Oxoprolinuria due to hereditary 5-oxoprolinase deficiency in two brothers — A new inborn error of the γ-glutamyl cycle. Acta Pediat. Scand. 70, 301–308 (1981).

    Article  CAS  Google Scholar 

  3. Larsson, A. Hereditary disorders in glutathione metabolism. in Glutathione: Metabolism and physiological functions (ed. Viña, J.) 359–366 (CRC Press, Boston, 1990).

    Google Scholar 

  4. Meister, A. & Larsson, A. Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle. in The Metabolic basis of inherited disease, 7th edn. (eds Beaudet, A.L., Scriver, C.R., Sly, W. S. & Valle, D.) 1461–1477 (McGraw-Hill, New York, 1995).

    Google Scholar 

  5. Spielberg, S.P. et al. 5-Oxoprolinuria: biochemical observations and case report. J. Pediat. 91, 237–241 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Jain, A., Buist, N.R.M., Kennaway, N.G., Powell, B.R., Auld, P.A.M. & Mårtensson, J. Effect of ascorbate or N-acetylcysteine treatment in a patient with hereditary glutathione synthetase deficiency. J. Pediat. 124, 229–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Mohler, D.N., Majerus, P.W., Minnich, V.M., Hess, C.E. & Garrick, M.D. Glutathione synthetase deficiency as cause of hereditary hemolytic disease. N. Engl. J. Med. 283, 1253–1257 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Shi, Z.-Z. et al. A single mouse glutathione synthetase gene encodes six mRNAs with different 5′ ends. Arch. Biochem. Biophys. 331, 215–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Gali, R.R. & Board, P.G. Sequencing and expression of a cDNA for human glutathione synthetase. Biochem. J. 310, 353–358 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spielberg, S.P. et al. Biochemical heterogeneity in glutathione synthetase deficiency. J. Clin. Invest. 61, 1417–1420 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsson, A., Mattsson, B., Hagenfeldt, L. & Moldéu, P. Glutathione synthetase deficient human fibroblasts in culture. Clin. Chim. Acta 135, 57–64 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Astor, M.B. Radiobiological studies with a series of human cell lines of varying glutathione content. Br. J. Radiol. 57, 717–722 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Kavanagh, T.J. et al. Enhancement of glutathione content in glutathione synthetase-deficient fibroblasts from a patient with 5-oxoprolinuria via metabolic cooperation with normal fibroblasts. Exp. Cell Res. 212, 69–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  15. Sachs, A.B. Messenger RNA degradation in eukaryotes. Cell 74, 413–421 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Mutoh, N., Nakagawa, C.W., Ando, S., Tanabe, K. & Hayashi, Y. Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 181, 430–436 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Mutoh, N. & Hayashi, Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem. Biophys. Res. Commun. 151, 32–39 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Beutler, E. Glutathione deficiency, pyroglutamic acidema and amino acid transport. N. Engl. J. Med. 295, 441–442 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Higuchi, R., Krummel, B. & Saiki, P.K. A general method of in vitro preparation and specific mutagenesis of DNA fragment: Study of protein and DNA intereactions. Nucl. Acids Res. 16, 7351–7367 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meister, A. Glutathione synthetase from rat kidney. Meth. Enzymol. 113, 393–399 (1985).

    Article  CAS  Google Scholar 

  21. Forsburg, S.L. Comparison of Schizosaccharomyces pombe expression systems. Nucl. Acids Res. 21, 2955–2956 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Majerus, P.W., Brauner, M.J., Smith, M.B. & Minnich, V. Glutathione synthesis in human erythrocytes: II. Purification and properties of the enzymes of glutathione biosynthesis. J. Clin. Invest. 50, 1637–1643 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, ZZ., Habib, G., Rhead, W. et al. Mutations in the glutathione synthetase gene cause 5–oxoprolinuria. Nat Genet 14, 361–365 (1996). https://doi.org/10.1038/ng1196-361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing