Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome


Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder characterized by hypopigmentation, severe immunologic deficiency with neutropenia and lack of natural killer (NK) cells, a bleeding tendency and neurologic abnormalities1–4. Most patients die in childhood. The CHS hallmark is the occurrence of giant inclusion bodies and organelles in a variety of cell types, and protein sorting defects into these organelles5–8. Similar abnormalities occur in the beige mouse6,7,9–13, the proposed model for human CHS. Two groups have recently reported the identification of the beige gene14,15, however the two cDNAs were not at all similar. Here we describe the sequence of a human cDNA homologous to mouse beige, identify pathologic mutations and clarify the discrepancies of the previous reports. Analysis of the CHS polypeptide demonstrates that its modular architecture is similar to the yeast vacuolar sorting protein, VPS15.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Beguez-Cesar, A.B. Neutropenia cronica maligna familiar congranulaciones atipicas de los leucocitos. Bol. Soc. Cubana Pediatr. 15, 900–922 (1943).

  2. 2

    Steinbrinck, W. Uber eine neue Granulationsanomalie der Leukocyten. Dtsch. Arch. Klin. Med. 193, 577–581 (1948).

  3. 3

    Chediak, M. Nouvelle anomalie leukocytaire de caractere constitutionnel et familiel. Rev. Hematol. 7, 362–367 (1952).

  4. 4

    Higashi, O. Congenital gigantism of peroxidase granules. Tohoku J. Exp. Med. 59, 315–332 (1954).

  5. 5

    Jones, K.L., Stewart, R.M., Fowler, M., Fukuda, M. & Holcombe, R.F. Chediak-Higashi lymphoblastoid cell lines: granule characteristics and expression of lysosome-associated membrane proteins. Clin. Immunol. Immunopath. 65, 219–226 (1992).

  6. 6

    Burkhardt, J.K., Wiebel, F.A., Hester, S. & Argon, Y. The giant organelles in Beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes. J. Exp. Med. 178, 1845–1856 (1993).

  7. 7

    Holcombe, R.F., Jones, K.L. & Stewart, R.M. Lysosomal enzyme activities in Chediak-Higashi syndrome: evaluation of lymphoblastoid cell lines and review of the literature. Immunodeficiency 5, 131–140 (1994).

  8. 8

    Zhao, H. et al. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Lab. Investig. 71, 25–34 (1994).

  9. 9

    Lutzner, M.A., Lowrie, C.T. & Jordan, H.W. Giant granules in leukocytes of the beige mouse. Heredity 58, 299–300 (1966).

  10. 10

    Brandt, E.J., Elliott, R.W. & Swank, R.T. Defective lysosomal enzyme secretion in kidneys of Chediak-Higashi (beige) mice. J. Cell Biol. 67, 774–788 (1975).

  11. 11

    Swank, R.T. & Brandt, E.J. Turnover of kidney β-glucuronidase in normal and Chediak-Higashi (beige) mice. Am. J. Pathol. 92, 755–771 (1978).

  12. 12

    Willingham, M.C., Spicer, S.S. & Vincent, R.A., The origin and fate of large dense bodies in beige mouse fibroblasts. Exp. Cell Res. 136, 157–168 (1981).

  13. 13

    Penner, J.D. & Prieur, D.J. A comparative study of the lesions in cultured fibroblasts of humans and four species of animals with Chediak-Higashi syndrome. Am. J. Med. Genet. 28, 445–454 (1987).

  14. 14

    Perou, C.M. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nature Genet. 13, 303–308 (1996).

  15. 15

    Barbosa, M.D.F.S. et al. Identrtication of the homologous beige and Chediak-Higashi syndrome genes. Nature 382, 262–265 (1996).

  16. 16

    Stein, L., Kruglyak, L., Slonim, D. & Lander, E. Unpublished software, Whitehead Institute/MIT Center for Genome Research (1995).

  17. 17

    Fukai, K. et al. Homozygosity mapping of the gene for Chediak-Higashi syndrome to chromosome 1q42–q44 in a segment of conserved synteny that includes the mouse beige locus (bg). Am. J. Hum. Genet., 59, 620–624 (1996).

  18. 18

    Barret, F.J. et al. Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42–43. Am. J. Hum. Genet. 59, 625–632 (1996).

  19. 19

    Bork, P. & Koonin, E.V. Protein sequence motifs. Curr. Opin. Struct. Biol. 6, 366–376 (1996).

  20. 20

    Peifer, M., Berg, S. & Reynolds, A.B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791 (1994).

  21. 21

    Andrade, M.A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).

  22. 22

    DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

  23. 23

    Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

  24. 24

    Zheng, X.F., Florentine, D., Chen, J., Crabtree, G.R. & Schreiber, S.L. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121–130 (1995).

  25. 25

    Hemmings, B.A. et al. α-and β-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166–3173 (1990).

  26. 26

    Neer, E.J., Schmidt, C.J., Nambudripad, R. & Smith, T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

  27. 27

    Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Crystal structure of a GA protein beta gamma dimer at 2.1A resolution. Nature 379, 369–374 (1996).

  28. 28

    Wall, M.A. et al. The structure of the G protein heterotrimer Gi α1β1γ2. 83, 1047–1058 (1995).

  29. 29

    Belmont, L.D. & Mitchison, T.J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).

  30. 30

    Lupas, A.N. et al. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

  31. 31

    Klionsky, D.J. & Emr, S.D. A new class of lysosomal/vacuolar protein sorting signals. J. Biol. Chem. 265, 5349–5352 (1990).

  32. 32

    Herman, P.K., Stack, J.H. & Emr, S.D. A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of VPS15p in vacuolar protein delivery. EMBO J. 10, 4049–60 (1991).

  33. 33

    Stack, J.H., Herman, P.K., Schu, P.V. & Emr, S.D. A membrane-associated complex containing the Vps15 protein kinase and the VPS34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12, 2195–204 (1993).

  34. 34

    Novak, E.K., Hui, S.W. & Swank, R.T. Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536–544 (1984).

  35. 35

    Altschul, S.F., Boguski, M.S., Gish, W. & Wootton, J.C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).

  36. 36

    Wootton, J.C. & Federhen, S. Analysis of compositionally biased regions in sequence databases. Meth. Enz. 266, 554–571 (1996).

  37. 37

    Rost, B., Sander, C. & Schneider, R. PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10, 53–60 (1994).

  38. 38

    Bork, P. & Gibson, T. Applying motif and profile searches. Meth. Enz. 266, 162–184 (1996).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading