Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2


The gene for spinocerebellar ataxia type 2 (SCA2) has been mapped to 12q24.1. A1.1–megabase contig in the candidate region was assembled in P1 artificial chromosome and bacterial artificial chromosome clones. Using this contig, we identified a CAG trinucleotide repeat with CAA interruptions that was expanded in patients with SCA2. In contrast to other unstable trinucleotide repeats, this CAG repeat was not highly polymorphic in normal individuals. In SCA2 patients, the repeat was perfect and expanded to 36–52 repeats. The most common disease allele contained (CAG)37, one of the shortest expansions seen in a CAG expansion syndrome. The repeat occurs in the 5′–coding region of SCA2 which is a member of a novel gene family.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Gudmundsson, K. The prevalence and occurrence of some rare neurological diseases in Iceland. Acta. Neurol. Scan. 45, 114–118 (1969).

    CAS  Article  Google Scholar 

  2. 2

    Orr, H.T. et al. Expansion of an unstable trinucleotide GAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA) to chromosome 12q23–24.1. Nature Genet. 4, 295–299 (1993).

    CAS  Article  Google Scholar 

  5. 5

    Pulst, S.M., Nechiporuk, A. & Starkman, S. Anticipation in spinocerebellar ataxia type 2. Nature Genet. 5, 8–10 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Flanigan, K. et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): Clinical description and genetic localization to chromosome 16q22.1. Am. J. Hum. Genet. 59, 392–399 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Ranum, L.P.W., Schut, L.J., Lundgren, J.K. & Orr, H.T. Spinocerebellar ataxia type 5 in a family descended from the grandparents of president Lincoln maps to chromosome. Nature Genet. 8, 280–284 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Gouw, L.G. et al. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nature Genet. 10, 89–93 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Gispert, S. et al. Localization of the candidate gene D–Amino acid oxidase outside the refined l–cM region of spinocerebellar ataxia 2. Am. J. Hum. Genet. 57, 972–975 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Krauter, K. et al. A second–generation YAC contig map of human chromosome 12. Nature 377, 321–323 (1995).

    CAS  Google Scholar 

  11. 11

    Nechiporuk, A. et al. Genetic mapping of the spinocerebellar ataxia type 2 gene on human chromosome 12. Neurology 46, 1731–1735 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Durr, A. et al. Dominant cerebellar ataxia type l linked to chromosome 12q (SCA2: spinocerebellar ataxia type 2). Clin. Neurosci. 3, 12–16 (1995).

    CAS  PubMed  Google Scholar 

  13. 13

    The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  14. 14

    La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X–linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Loannou, P.A. et al. A new bacteriophage P1–derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  19. 19

    Nechiporuk, T. et al. Identification of three new microsatellite markers in the spiocerebellar ataxia type 2 (SCA2) region and 1.2 Mb physical map. Hum. Genet. 97, 462–467 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    CAS  Article  Google Scholar 

  21. 21

    SantaLucia, J., Jr Allawi, H.T. & Seneviratne, P.A. Improved nearest–neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Yamakawa, K. et al. Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Hum. Mol. Genet. 4, 709–716 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Nelson, D. The fragile X syndromes. Cell Biol. 6, 5–11 (1995).

    CAS  Google Scholar 

  26. 26

    Goldberg, Y.P. et al. Molecular analysis of new mutations for Huyntington's disease: intermediate alleles and sex of origin effects. Nature Genetics 5, 174–179 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Myers, R.H. et al. De Novo expansion of a (CAG) repeat in sporadic Huntington's disease. Nature Genet. 5, 168–173 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Rubinsztein, D.C. et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36 to 39 repeats. Am. J. Hum. Genet. 59, 16–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Filla, A. et al. Has spinocerebellar ataxia type 2 a distinct phenotype? Genetic and clinical study of an Italian family. Neurology 45, 793–796 (1995).

    CAS  Article  Google Scholar 

  31. 31

    McMurray, C.T. Mechanisms of DNA expansion. Chromosoma 104, 2–13 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Chung, M.Y., Ranum, L., Duvick, L., Servadio, A., Zoghbi, H. & Orr, H.T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet. 5, 252–258 (1993).

    Article  Google Scholar 

  33. 33

    Burke, J.R. et al. Huntington and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2, 347–350 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Ikeda, H. et al. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Li, X.–J. et al. A huntingtin–associated protein enriched in brain with implications for pathology. Nature 378:, 398–402 (1995).

    Article  Google Scholar 

  36. 36

    Cohen, D., Chumakov, I. & Weissenbach, J. A first–generation physical map of the human genome. Nature 366, 698–701 (1993).

    CAS  Article  Google Scholar 

  37. 37

    Larin, Z. & Lehrach, H. Yeast artificial chromosomes: an alternative approach to the molecular analysis of mouse developmental mutations. Genet. Res. 56, 203–208 (1990).

    CAS  Article  Google Scholar 

  38. 38

    Korenberg, J.R. & Chen, X.N. Human cDNA mapping using a high resolution R–banding technique and fluorescence In situ–hybridization. Cytogenet. Cell Genet. 69, 196–200 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Huynh, D., Nechiporuk, T. & Pulst, S.-M. Alternative transcripts in the mouse neurofibromatosis type 2 (NF2) gene are conserved and code for schwannomins with distinct C–terminal domains. Hum. Mol. Genet. 3, 1075–1079 (1994a).

    CAS  Article  Google Scholar 

  40. 40

    Ralston, M.L. & Jennrich, R.I. DUD, a derivative free algorithm for non–linear least squares. Technometrics 20, 7–14 (1978).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pulst, SM., Nechiporuk, A., Nechiporuk, T. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14, 269–276 (1996).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing