Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of the cryptic FMR1 CGG repeat

Abstract

We have sequenced the 5′ untranslated region of the orthologous FMR1 gene from 44 species of mammals. The CGG repeat is present in each species, suggesting conservation of the repeat over 150 million years of mammalian radiation. Most mammals possess small contiguous repeats (mean number of repeats = 8.0 +/− 0.8), but, in primates, the repeats are larger (mean= 20.0 +/− 2.3) and more highly interrupted. Parsimony analysis predicts that enlargement of the FMR1 CGG repeat beyond 20 triplets has occurred in three different primate lineages. In man and gorilla, AGG interruptions occur with higher–order periodicity, suggesting that historical enlargement has involved incremental and vectorial addition of larger arrays demarcated by an interruption. Our data suggest that replication slippage and unequal crossing over have been operative during the evolution of this repeat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jones, C. et al. Association of a chromosome deletion syndrome with a fragile site within proto-oncogene CBL2. Nature 376, 145–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Parrish, J.E. et al. Isolation of a GCC repeat showing expansion in FRAXF, a fragile site distal to FRAXA and FRAXE. Nature Genet. 8, 229–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Nancarrow, J.K. et al. Implications of FRA16A Structure for the mechanism of chromosomal fragile site genesis. Science 264, 1938–1941 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Knight, S.J. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Fu, Y.H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 66, 905–914 (1991).

    Article  Google Scholar 

  7. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–81 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–102 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Ashley, C.T. et al. Human and murine FMR-1: evidence for alternative splicing and translational initiation downstream of the CGG-repeat. Nature Genet. 4, 244–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Snow, K., Tester, D.J., Kruckenberg, K.E., Schaid, D.J. & Thibodeau, S.N. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum. molec. Genet. 3, 1543–1551 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Richards, R.I. et al. Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J. Med. Genet. 28, 818–23 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Hirst, M.C., Grewal, P.K. & Davies, K.E. Precursor arrays for triplet repeat expansion at the fragile X locus. Hum. molec. Genet. 3, 1553–1560 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Eichler, E.E. et al. Length of uniterrupted CGG repeats determines stability in the FMR1 gene. Nature Genet. 8, 88–94 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Chung, M.-Y. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Snow, K. et al. Analysis of a CGG sequence at the FMR-1 locus in the fragile X families and in the general population. Am. J. hum. Genet. 53, 1217–1228 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Richards, R.I., Holman, K., Yu, S. & Sutherland, G.R. Fragile X syndrome unstable element, p(CCG)n, and other simple tandem repeat sequences are binding sites for specific nuclear proteins. Hum. molec. Genet. 2, 1429–1435 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Riggins, G.J. et al. Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Perrin-Pecontal, P., Gouy, M., Nigon, V.-M. & Trabuchet, G. Evolution of the primate beta-globin gene region: nucleotide sequence of the delta-beta-globin intergenic region of gorilla and phylogenetic relationships between African apes and man. J. mol. Evol. 34, 17–30 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Bauer, K. Primate phylogeny studied by comparative determinant analysis. Exp. Clin. Immunogenet. 10, 56–60 (1993).

    CAS  PubMed  Google Scholar 

  22. Miyamoto, M., Slightom, J. & Goodman, M. Phylogenetic relations of humans and apes from DNA sequences in the psi eta-globin region. Science 238, 369–373 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wolff, R.K., Plaetke, R., Jeffreys, A.J. & White, R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5, 382–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Levinson, G. & Gutman, G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molec. Biol. Evol. 4, 203–221 (1986).

    Google Scholar 

  26. Arinami, T., Asano, M., Kobayashi, K., Yanagi, H. & Hamaguchi, H. Data on the CGG repeat at the fragile X site in the non-retarded Japanese population and family suggest the presence of a subgroup of normal alleles predisposing to mutate. Hum. Genet. 92, 431–436 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Macpherson, J. et al. Unusual (CGG)n expansion and recombination in a family with fragile X and DiGeorge syndrome. J. med. Genet. 32, 236–239 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubinsztein, D.C. et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genet. 7, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Stephen, W. & Cho, S. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics. 136, 333–341 (1994).

    Google Scholar 

  30. Tachida, H. & lizuka, M. Persistence of repeated sequences that evolve by replication slippage. Genetics. 131, 471–478 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh, J.B. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115, 553–567 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, G.P. Evolution of repeated DNA sequences by unequal crossover. Science 191, 528–535 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. Stephan, W. Tandem-repetetive noncoding DNA: forms and forces. Molec. Biol. Evol. 6, 198–212 (1989).

    CAS  PubMed  Google Scholar 

  34. Gacy, A., Goellner, G., Juranic, N., Macura, S. & McMurray, C. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Jacobson, D.R., Schmelling, P. & Sommer, S.S. Characterization of the patterns of polymorphism in a “cryptic repeat” reveals a novel type of hypervariable sequence. Am. J. hum. Genet. 53, 443–450 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weber, J.L. Informativeness of human (dC-dA)n.(cG-dT)n polymorphisms. Genomics 7, 524–530 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Tucker, P.K., Lee, B.K., Lundrigan, B.L. & Eicher, E.M. Geographic origin of the Y chromosomes in “old” inbred strains of mice. Mammalian genome 3, 254–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Rubinsztein, D.C., Leggo, J., Amos, W., Barton, D.E. & Ferguson-Smith, M.A. Myotonic dystrophy CTG repeats and the associated insertion/deletion polymorphism in human and primate populations. Hum. molec. Genet. 3, 2031–2035 (1994).

    CAS  PubMed  Google Scholar 

  39. Deelen, W., Bakker, C., Halley, D.J.J. & Oostra, B.A. Conservation of CGG region in FMR1 gene in mammals. Am. J. med. Genet 51, 001–008 (1994).

    Article  Google Scholar 

  40. Chong, S.S., Eichler, E.E., Hughes, M.R. & Nelson, D.L. Robust amplification of the fragile X syndrome CGG repeat using Pfu polymerase: ethidium bromide detection of normal and premutation alleles. Am. J. med. Genet. 51, 522–526 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, E., Kunst, C., Lugenbeel, K. et al. Evolution of the cryptic FMR1 CGG repeat. Nat Genet 11, 301–308 (1995). https://doi.org/10.1038/ng1195-301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing