Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linkage between sexual orientation and chromosome Xq28 in males but not in females

Abstract

We have extended our analysis of the role of the long arm of the X chromosome (Xq28) in sexual orientation by DNA linkage analyses of two newly ascertained series of families that contained either two gay brothers or two lesbian sisters as well as heterosexual siblings. Linkage between the Xq28 markers and sexual orientation was detected for the gay male families but not for the lesbian families or for families that failed to meet defined inclusion criteria for the study of sex–linked sexual orientation. Our results corroborate the previously reported linkage between Xq28 and male homosexuality in selected kinships and suggest that this region contains a locus that influences individual variations in sexual orientation in men but not in women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trip, C.A. The Homosexual Matrix. (Signet, New York, 1975).

    Google Scholar 

  2. Bell, A.P., Weinberg, M.S. & Hammersmith, S.K. Sexual Preference: Its Development in Men & Women. (Indiana University Press, Bloomington, 1981).

    Google Scholar 

  3. LeVay, S. The Sexual Brain. (MIT Press,Cambridge, MA, 1993).

    Google Scholar 

  4. Hamer, D.H. & Copeland, P. The Science of Desire. (Simon & Schuster, New York, 1994).

    Google Scholar 

  5. Hamer, D.H., Hu, S., Magnuson, V.L., Hu, N. & Pattatucci, A.M.L. A linkage between DNA markers on the X chromosome and male sexual orientation. Science 261, 321–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Pattatucci, A.M.L. & Hamer, D. Development and familiality of sexual orientation in females. Behav. Genet. 25, 407–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Putter, M. Psychiatric genetics: research challenges and pathways forward. Am. J. med. Genet. 15, 185–198 (1994).

    Google Scholar 

  8. Bailey, J.M. & PiIlard, R.C. A genetic study of male sexual orientation. Archs. gen. Psychiat. 48, 1089–1096 (1991).

    Article  CAS  Google Scholar 

  9. Bailey, J.M. & Bell, A.P. Familiality of female & male homosexuality. Behav. Genet. 23, 313–322 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Bailey, J.M. & Benishay, B.A. Familial aggregation of female sexual orientation. Am. J. Psychiat. 150, 272–277 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Bailey, J.M., Pillard, R.C., Neale, M.C. & Agyei, Y. Heritable factors influence sexual orientation in women. Archs. gen. Psychiat. 50, 217–223 (1993).

    Article  CAS  Google Scholar 

  12. Pillard, R.C. & Weinrich, J.D. Evidence of familial nature of male homosexuality. Archs. gen. Psychiat. 43, 808–812 (1986).

    Article  CAS  Google Scholar 

  13. Pillard, R.C., Kinsey scale: is it familial? In Homosexuality/ Heterosexuality: Concepts of Sexual Orientation (eds McWhirter, D.R., Sanders, S.A. & Reinisch, J.M.) 88–100 (Oxford University Press, Oxford, 1990).

    Google Scholar 

  14. Kinsey, A.C., Pomeroy, W.B. & Martin, C.E. Sexual Behavior in the Human Male. (W.B. Saunders, Philadelphia, 1948).

    Google Scholar 

  15. Kinsey, A.C., Pomeroy, W.B., Martin, C.E. & Gebhard, P. Sexual Behavior in the Human Female. (W.B. Saunders, Philadelphia, 1953).

    Google Scholar 

  16. Kruglyak, L. & Lander, E.S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. hum. Genet. 57, 439–454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haseman, J.K. & Elston, R.C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Cardon, L.R. & Fulker, D.W. The power of interval mapping of quantitative trait loci, using selected sib pairs. Am. J. hum. Genet. 55, 825–833 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fulker, D.W. & Cardon, L.R. A sib-pair approach to interval mapping of quantitative trait loci. Am. J. hum. Genet. 54, 1092–1103 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fulker, D.R., Chemy, S.S. & Cardon, L.R. Multipoint interval mapping of quantitative trait loci using sib pairs. Am. J. hum. Genet. 56, 1224–1233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran, L.D., Elston, R.C., Keats, B.J.B. & Wilson, A.F. Sib-pair linkage program In S.A.G.E. Users Guide, Release 2.2. (Department of Biometry and Genetics, LSU Medical Center, New Orleans, 1994).

    Google Scholar 

  22. Freije, D., Helms, C., Watson, M.S. & Donis-Keller, H. Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258, 1784–1787 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Kvaloyy, K., Galvagni, F. & Brown, W.R.A. The sequence organization of the long arm pseudoautosomal region of the human sex chromosomes. Hum. molec. Genet. 3, 771–778 (1994).

    Article  Google Scholar 

  24. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Pericak-Vance, M.A. et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am. J. hum. Genet. 48, 1034–1050 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cardon, L.R., Smith, S.D., Fulker, D.W., Kimberling, W.J., Pennington, B.F. & DeFries, J.C. Quantitative trait for reading disability on chromosome 6. Science 265, 276–279 (1994).

    Article  Google Scholar 

  27. Boehnke, M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am. J. hum. Genet. 55, 379–90 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kruglyak, L. & Lander, E. High-resolution genetic mapping of complex traits. Am. J. hum. Genet. 56, 1212–1223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haqq, C.M. et al. Molecular basis of mammalian sexual determination: activation of Mullerian inhibiting substance gene expression by SRY. Science 266, 1494–1450.(1994).

    Article  CAS  PubMed  Google Scholar 

  30. Kruglyak, L., Daly, M.J. & Lander, E.S. Rapid multipoint analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. hum. Genet. 56, 519–527 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, L.H., Collins, A., Lawrence, S., Keats, B.J. & Morton, N.E. Integration of gene maps: chromosome X. Genomics 22, 590–604 (1994).

    Article  PubMed  Google Scholar 

  32. Fisher, R.A. Statistical methods for research workers, 10th Edition. (Oliver & Boyd, Edinburgh (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Pattatucci, A., Patterson, C. et al. Linkage between sexual orientation and chromosome Xq28 in males but not in females. Nat Genet 11, 248–256 (1995). https://doi.org/10.1038/ng1195-248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing